Компания Каскад

Инструкция по монтажу пластмассовых трубопроводов на объектах АПК России.

ОСН-АПК 2.10.06.001-04 Инструкция по монтажу пластмассовых трубопроводов на объектах АПК России

ОСН-АПК 2.10.06.001-04

     
     
СИСТЕМА НОРМАТИВНЫХ ДОКУМЕНТОВ В АГРОПРОМЫШЛЕННОМ КОМПЛЕКСЕ
 МИНИСТЕРСТВА СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ

ОТРАСЛЕВЫЕ СТРОИТЕЛЬНЫЕ НОРМЫ

ИНСТРУКЦИЯ
ПО МОНТАЖУ ПЛАСТМАССОВЫХ ТРУБОПРОВОДОВ НА ОБЪЕКТАХ АПК РОССИИ



Дата введения 2004-12-01

     
     
ПРЕДИСЛОВИЕ

1. РАЗРАБОТАНЫ: ФГУП "ЦНИИЭПсельстрой" (Минсельхоз России) при участии МГСУ (Минобразования России)

2. ВНЕСЕНЫ: ФГУП "ЦНИИЭПсельстрой".

3. ОДОБРЕНЫ: НТС Минсельхоза России (протокол от 8 апреля 2004 г. N 22).

4. УТВЕРЖДЕНЫ И ВВЕДЕНЫ В ДЕЙСТВИЕ: Заместителем Министра сельского хозяйства Российской Федерации (10.11.04).

5. ВЗАМЕН: ВСН 35-86.

6. РАССМОТРЕНЫ: Департаментом экономики и финансов Минсельхоза России (письмо от 19 февраля 2004 г. N 237-08/354)

СОГЛАСОВАНЫ: Департаментом аграрной политики и развития сельских территорий (05.11.04).


1. ОБЩИЕ ПОЛОЖЕНИЯ


Настоящая инструкция разработана в развитие ВСН 35-86 на производство работ по изготовлению трубных заготовок, монтажу, сдаче и приемке пластмассовых трубопроводов на объектах (жилые, культурно-бытовые и производственные здания и сооружения) сельскохозяйственного строительства.

Области применения пластмассовых труб в сельском строительстве в зависимости от вида трубопроводов и их диаметры приводятся в прил.1.

Требования настоящей инструкции должны выполняться при производстве и приемке работ по изготовлению трубных заготовок и монтажу трубопроводов систем внутренней канализации, холодного и горячего водоснабжения из пластмассовых труб в зданиях и сооружениях в Агропромышленном комплексе (АПК) России.

Впредь, до вступления в силу соответствующих технических регламентов, осуществлять применение настоящих ОСН в добровольном порядке, за исключением обязательных требований, обеспечивающих достижение целей законодательства Российской Федерации о техническом регулировании (
Федеральный закон о техническом регулировании от 27 декабря 2002 г. N 184-ФЗ).

Разделы 1…12 и приложения 1, 3, 4 носят обязательный, приложение 2 - рекомендательный, а приложения 3, 4 - справочный характер.


1.1. Материалы для изготовления труб и деталей трубопроводов

1.1.1. Типы пластмасс для изготовления труб, их названия и сокращенные обозначения приведены в таблице 1.1.


Табл.1.1

         

N пп

Наименование и обозначение на русском языке

Наименование и обозначение на английском языке

1

2

3

4

5

1.

Поливинилхлорид

ПВХ

Polivinilchoride

PVC

2.

Полиэтилен высокого давления (низкой плотности)

ПВД
(ПНП)

Polyethylene

PELD

3.

Полиэтилен низкого давления (высокой плотности)

ПВД*
(ПВП)

Polyethylene

PEHD

4.

Полипропилен

ПП

Polуpropelene

PP

5.

Полибутен

ПБ

Polybytene

PB

6.

Стеклопластик на эпоксидной смоле

СТЭ

Epoxy

GRE

7.

Стеклопластик на полиэфирной смоле

СТП

Polyester

GRP

8.

Сшитый полиэтилен

ПЭС

Grosslinked polyethyelene

PEX

9.

Полиэтилен среднего давления (средней плотности)

ПСД
(ПСП)

Polyethylene

PEMD

10.

Линейный полиэтилен низкой плотности

-

Polyethylene

PELLD

__________________
* Текст соответствует оригиналу. - Примечание изготовителя базы данных.


1.1.2. Пластмассы по типу полимерных соединений разделяют на термопластичные и термореактивные (термопласты и реактопласты).

К первой группе - термопластов относятся пластмассы, которые при нагревании переходят в пластическое состояние и могут перерабатываться методом экструзии (в трубы) и методом литья под давлением (в соединительные и фасонные детали). После переработки в изделия свойства термопластов не изменяются. Они могут быть подвергнуты вторичной переработке аналогичными методами.

Ко второй группе - реактопластам относятся пластмассы, которые в процессе формования в изделие отверждаются и в отличие от термопластов теряют способность к повторному формованию. Обычно реактопласты в чистом виде не применяются, а используются в качестве компонентов композитных материалов в сочетании со стеклянными углеродными, полимерными и другими волокнами. Наиболее широко используемыми для изготовления стеклопластиковых труб отверждающимися полимерными материалами являются эпоксидная и полиэфирная смолы.

1.1.3. Характеристика основных полимерных материалов, применяемых для изготовления труб и соединительных деталей, приведена в табл.1.2.


Табл.1.2

Характеристики некоторых полимерных материалов, применяемых для производства труб и соединительных деталей

                           

Показатель

Значения показателя для материала

 

ПВД
(ПНП) PELD

ПСД
(ПСП) PEMD

ПНД (ПВП) PEHD

РЕХ

ПВХ PVC

ПВХХ PVCC

ПП
РР

ПБ
РВ

фторполимеры

стекло-
пластики

АБС-
плас-
тики

                 

Ф-4

Ф-3

ПВДФ

   

Плотность, г/см

0,910-0,925

0,926-0,940

0,941-0,965

0,930-0,950

1,4

1,57

0,91

0,93

2,2

2,08-2,16

1,78

1,6-2,2

1,3

Предел текучести при растяжении, МПа

10-12

15-18

20-25

>18

45-70

60

>25

17-19

14-35

30-40

57-60

180-250

>37

Относительное удлинение при разрыве, %

600

800

800

200-500

10-60

14

>350

300

250-500

200

30

0,4-1,4

>6

Модуль упругости, МПа

200

1000

800

550-800

3000

2900-3700

900-1200

450-800

470-850

1160-1450

2000-2400

10000-25000

2100

Коэффициент линейного теплового расширения, 1/°С·10[мм/(м·°С)]

2 (0,2)

2 (0,2)

2 (0,2)

1,4 (0,14)

0,8 (0,08)

0,7 (0,07)

1,5 (0,15)

1,3 (0,13)

0,8-2,5 (0,08-0,25)

0,6-1,2 (0,06-0,12)

1,2 (0,12)

0,18-0,3 (0,018-0,03)

0,1 (0,01)

Расчетное допускаемое напряжение для труб, МПа

3,2

6,3

5-8

9,5

10-12,5

10

5-8

8

10

10

16

(1)

8


Примечания: 1. Расчетное допускаемое напряжение назначается производителем в зависимости от конструкции трубы и применяемых материалов.

2. Некоторые показатели, специфичные для конкретного материала, приведены в тексте. Значения показателей для конкретной марки материала запрашиваются у изготовителей пластмассовых труб и соединительных деталей.



1.2. Трубы и соединительные детали

1.2.1. Пластмассовые трубы можно классифицировать по следующим характерным признакам:

по полимерному материалу, которым определяются свойства трубопроводов и оптимальные условия эксплуатации (см. пункт 1.1);

по способу производства (метод непрерывной экструзии и литья под давлением при переработке термопластов, методами намотки и центробежного формования при изготовлении изделий из стеклопластиков);

по минимальному внутреннему давлению 
, минимальной длительной прочности и жесткости SN;

по конструкции труб: с гладкой или гофрированной стенкой, однослойные и многослойные, армированные, из разнородных материалов, с гладким или раструбным концом.

1.2.2. Номинальное внутреннее давление , минимальная длительная прочность  и жесткость SN для пластмассовых труб нормализованы международным стандартом ГОСТ 29324-92* (ISO 161/1-96) "Трубы из термопластов. Номинальные наружные диаметры и номинальное давление".
________________
* На территории Российской Федерации действует 
ГОСТ ИСО 161-1-2004, здесь и далее по тексту; . - Примечание изготовителя базы данных. 

За основу нормализации принят наружный диаметр, который при изменении толщины стенки остается постоянным, а внутренний диаметр изменяется соответственно. Полный ряд наружных диаметров пластмассовых труб (в мм) следующий: 10; 12; 16; 20; 25; 32; 40; 50; 63; 75; 90; 110; 125; 140; 160; 180; 200; 225; 250; 280; 315; 355; 400; 450; 500; 560; 630; 710; 800; 900; 1000 и 1200.

В зависимости от номинального рабочего давления трубы подразделяются на типы, приведенные в табл.1.3. Они характеризуются соответствующим значением толщины стенки, обеспечивающей прочностные характеристики трубопроводов. Показатель наименьшего требуемого сопротивления (допускаемого напряжения) или минимальной длительной прочности 
(Minimum Required Strength) является определяющим критерием полимерных материалов, предназначенных для изготовления напорных труб. Классификация по основана на следующих международных стандартах:

ISO 9080 "Трубы из термопластов. Метод экстраполяции данных по стойкости к внутреннему давлению для определения длительной прочности термопластов для изготовления труб";

ISO 12162 "Термопласты для труб и соединительных деталей для напорных трубопроводов. Классификация и обозначения. Общие коэффициенты запаса прочности".


Табл.1.3

       

Тип труб

, бар (кгс/см)

   

Л - легкий

2,5

41

20

-

3,2

33

16

СЛ - среднелегкий

4

26

12,5

С- средний

6

17,6

8,3

Т- тяжелый

10

11

5

-

12

9

4

ОТ - особо тяжелый

16

7,4

3,2

-

20

6

2,5

-

25

5

2


В России новая классификация использована в 
ГОСТ Р 50838 "Трубы из полиэтилена для газопроводов", ГОСТ Р 51613 "Трубы напорные из непластифицированного поливинилхлорида" и СП 40-102-2000 "Проектирование и монтаж трубопроводных систем водоснабжения и канализации из полимерных материалов".

Согласно новой классификации, максимальное допускаемое рабочее давление  (в российских стандартах  обозначается как ) определяется по формуле:

, МПа, (1.1)


где 
 - минимальная длительная прочность, МПа (по определению ГОСТ Р 50838 - напряжение, полученное путем экстраполяции на срок службы 50 лет при температуре 20 °С данных испытаний труб на стойкость к внутреннему гидростатическому давлению с нижним доверительным интервалом 97,5% и округленное до ближайшего нижнего значения ряда R 10 по ГОСТ 8032);

 - стандартное размерное отношение номинального наружного диаметра трубы к номинальной толщине стенки;

 - коэффициент запаса прочности.

В характеристику трубы введен еще один размерный показатель 
 (трубная серия), вычисляемый по формуле:

. (1.2)


Соотношение между номинальным давлением 
 и размерными характеристиками приведено в табл.1.3.




Номинальное давление 
 - постоянное внутреннее давление воды при 20 °С, которое трубы и соединительные детали выдерживают в течение 50 лет при материала, равной 6,3 МПа (Н/мм). Максимальное рабочее давление определяется по формуле 1.1 в зависимости от свойств полимерного материала и условий работы трубопровода.

Трубы из стеклопластика, а также некоторые другие виды труб, используемые для безнапорных систем, классифицируются по жесткости.

Жесткость трубы определяется ее способностью сопротивляться нагрузкам от окружающего грунта и движения транспорта, а также отрицательным внутренним давлениям. Чем толще стенка, тем выше жесткость и способность к сопротивлению нагрузкам. Классы жесткости труб представлены в табл.1.4.


Табл.1.4

         

Обозначение

Система стандартизации

Классы жесткости

   

SN 2500

SN 5000

SN 10000

, H/м (Па)

ISO

2500

5000

10000

, H/мм (МПа)

DIN

0,02

0,04

0,08

, psi

АСТМ

20

40

80



Предприятия - изготовители труб и соединительных деталей из полимерных материалов приведены в приложении 2.




1.3. Параметры применения пластмассовых трубопроводов

1.3.1. Параметры, на основании которых производится выбор материала для трубопроводов, зафиксированы в следующих строительных нормах и правилах:

СНиП 2.04.01-85*. Внутренний водопровод и канализация зданий;

СНиП 2.04.02-84*. Водоснабжение. Наружные сети и сооружения;

СНиП 2.04.03-85 Канализация. Наружные сети и сооружения;

СНиП 2.04.05-91*. Отопление, вентиляция и кондиционирование. 

СНиП 2.04.07-86*. Тепловые сети.

СНиП 42-01-2002. Газораспределительные системы.

Основополагающим документом для проектирования внутренних систем холодного и горячего водоснабжения и канализации является 
СНиП 2.04.01-85*, которым определены следующие условия:

трубы, соединительные детали, арматура и другие материалы должны иметь разрешение для применения в питьевом водоснабжении (см. п.10.1*);
________________
* Здесь и далее даны ссылки на пункты СНиПов.


трубопроводная, водоразборная и смесительная арматура должна быть рассчитаны на рабочее давление 0,6 МПа (п.10.3);

гидростатический напор в системе хозяйственно-питьевого водоснабжения должен быть не выше 45 м (0,45 МПа) (п.6.7);

давление в системе горячего водоснабжения у санитарных приборов должно быть не более 0,45 МПа (п.5.12). 

В местах водозабора температура горячей воды предусматривается не ниже 50 °С в закрытых системах центрального теплоснабжения и не ниже 60 °С в открытых системах. Для всех систем температура горячей воды должна быть не выше 75 °С, кроме детских дошкольных учреждений, где она не должна превышать 37 °С (пп.2.2 и 2.3).

Скорость движения холодной и горячей воды в трубопроводах не должна превышать 3 м/с (п.7.6).

Установлено, что безотказный срок службы трубопроводов при постоянном давлении 0,45 МПа и температуре воды 20 °С должен составлять не менее 50 лет, а при температуре 75 °С - 25 лет (п.10.1).

Для внутренних систем канализации скорость жидкости должна быть не менее 0,7 м/с и наполнением трубопровода не менее 0,3 (п.18.2).

Во всех случаях эксплуатации внутренних трубопроводов холодного водоснабжения и канализации круглогодичного действия температура в помещениях зимой не должна быть ниже 2 °С. В случаях кратковременного снижения температуры в помещении до 0 °С и ниже предусматривается тепловая изоляция труб.

Параметры работы систем отопления зданий с трубами из термостойких полимерных материалов установлены 
СНиП 2.04.05-91* (1999 г.). Температура воды для низкотемпературных панелей радиационного нагрева должна быть не выше 60 °С, температура теплоносителя - не выше 90 °С. Давление в системе отопления не должно превышать 1,0 МПа (п.3.3, 3.16).

Работа наружных систем водоснабжения нормирована в 
СНиП 2.04.02-84* (1998 г.)

Этими нормами установлено, что минимальный свободный напор в сети водопровода при максимальном хозяйственно-питьевом водопотреблении на вводе в здание над поверхностью земли должен приниматься при одноэтажной застройке не менее 10 м (0,1 МПа), при большей этажности на каждый этаж добавляют 4 м (0,04 МПа) (п.2.26). Свободный напор в наружной сети хозяйственно-питьевого водопровода у потребителей не должен превышать 60 м (0,6 МПа). При напорах в сети более 60 м предусматривается установка регулятора давления или зонирование системы водоснабжения (п.2.28).

Параметры работы тепловых сетей регламентированы 
СНиП 2.04.07-86* (1998 г.).

Использование неметаллических труб в тепловых сетях допускается при температуре воды 115 °С, и ниже при давлении до 1,6 МПа включительно (п.7.3).

В последнее время увеличивается сектор отопления и горячего водоснабжения от местных или автономных источников теплоснабжения. В таких системах температура воды более низкая, чем 90-95 °С. Кроме того, большинство систем отопления и горячего водоснабжения оборудуются регуляторами давления и температуры, работающими по заданной программе. 

Основные параметры работы санитарно-технических трубопроводов приведены в табл.1.5.


Табл.1.5

Условия работы трубопроводов санитарно-технических систем

         

СНиП

Транспортируемая среда

Температура, °С

Рабочее давление, МПа

Нормативный срок службы, не менее, лет

1

2

3

4

5

2.04.01-85*. Внутренний водопровод и канализация

Холодная вода

20

0,45 (0,6)

 
 

Горячая вода

75

0,45 (0,6)

25

 

Бытовые стоки

60 (90)

-

50

2.04.05-91*. Отопление, вентиляция и кондиционирование

Горячая вода

90

0,6

50

2.04.03-85. Канализация. Наружные сети и сооружения

Бытовые стоки

40

-

50

2.04.02-85. Водоснабжение. Наружные сети и сооружения

Холодная вода

20

0,6

50

2.04.07-86*. Тепловые сети

Горячая вода

200

2,5

25

   

115

1,6

 

2.04.08-87* (42.01) Газоснабжение (наружные сети)

Природный газ

20

0,005

0,3; 0,6; 1,2

50

______________
 На территории Российской Федерации действуют СНиП 42-01-02. - Примечание изготовителя базы данных.

Примечание. Отмеченные знаком 
 параметры даны для неметаллических трубопроводов.


Основными критериями, определяющими выбор труб из того или иного материала, являются:

нормативный срок службы трубопровода;

диапазоны изменения рабочих температур транспортируемого вещества и окружающей среды;

максимальное рабочее давление;

требования, определяемые условиями прокладки трубопровода, включая свойства транспортируемого вещества;

диаметры трубопровода, обеспечивающие пропуск необходимого количества вещества в допускаемом диапазоне скоростей давлений.




1.4. Способы соединения пластмассовых трубопроводов


Пластмассовые трубы в силу своих свойств подразделяются на гибкие и жесткие. По условиям перевозок трубы могут транспортироваться длиной не более 12 м, а гибкие - в бухтах или на катушках.

Соединение пластмассовых труб и соединительных деталей между собой и присоединение их к арматуре и оборудованию осуществляются разъемными и неразъемными соединениями.

К разъемным соединениям относятся:

буртовое с накидной гайкой для трубопроводов с наружным диаметром до 50 мм;

буртовое со свободным фланцем для труб с наружным диаметром выше 63 мм;

разъемное металлическое (резьбовое);

раструбное с эластичным уплотнителем.

Неразъемные соединения осуществляются с помощью сварки, склейки враструб и механических неразъемных соединений. Сварка бывает:

стыковая;

раструбная;

раструбная с закладным электронагревателем.

Основные виды разъемных и неразъемных соединений пластмассовых труб и соединительных деталей приведены в табл.1.6.


Табл.1.6

     

Способ соединения

Материал пластмассовых труб

Область применения

1

2

3

Разъемные соединения

   

Соединение пластмассовой трубы с металлической деталью с помощью металлической натяжной гайки и привариваемой или приклеиваемой к основной трубе враструб литой буртовой втулки

ПЭ, ПП, ПВХ, ПВХ*

Трубопроводы тепло-, водоснабжения диаметром до 50 мм

________________
* Текст соответствует оригиналу. - Примечание изготовителя базы данных.

Разъемное соединение с накидной гайкой. Бурт отформован непосредственно на трубе

ПЭ, ПЭС

Гибкие подводки для присоединения санитарно-технических приборов и смесительной арматуры

Соединительные детали с резьбовой металлической втулкой, устанавливаемой в пластмассовой детали при ее отливке

ПЭ, ПП, ПБ, ПВХ, ПВХХ

Присоединения смесительной арматуры, разъемные резьбовые соединения пластмассовых и металлических труб

Разъемное буртовое соединение со свободными фланцами

ПЭ, ПП, ПБ, ПВХ, ПВХХ, СП

Трубопроводы любого назначения диаметром выше 50 мм

Разъемное раструбное соединение пластмассовых труб с помощью эластичных уплотнителей

ПЭ, ПП, ПВХ, ПВХХ, СП

Напорные и безнапорные трубопроводы водоснабжения и канализации

Ремонтные муфты с эластичной уплотняющей поверхностью

Трубы из любого материала с гладкой поверхностью

Для ремонтных целей и временного устранения повреждений напорных и безнапорных трубопроводов

Неразъемные соединения

   

Склейка враструб

ПВХ, ПВХХ, СП

Склейкой враструб соединяются пластмассовые трубопроводы, материал которых не обеспечивает прочность соединений при сварке

Сварка враструб

ПЭ, ПП, ПБ, ПВДФ

Контактной сваркой обычно соединяют трубы наружным диаметром до 63 мм

Сварка встык

ПЭ, ПП

Контактная сварка встык используется для соединения пластмассовых труб наружным диаметром свыше 63 мм и толщиной стенки более 4 мм для трубопроводов любого назначения

Сварное раструбное соединение с закладным электронагревателем

ПЭ, ПП, ПБ

Трубопроводы для тепло-, водо- и газоснабжения

Соединительная деталь для композитных труб Geberit Mepla

ПЭМ

Трубопроводы для горячего водоснабжения и отопления

Соединительная деталь с разъемным обжимным хомутом. Штампованный обжимной хомут для труб диаметром до 63 мм

ПЭС

-"-

Соединительная деталь с разъемным обжимным хомутом. Литой обжимной хомут для труб диаметром до 110 мм

ПЭ, ПЭС, ПП, ПБ

-"-

Соединение с натяжной металлической муфтой пластмассовых труб и металлических деталей

ПЭ, ПЭС, ПП, ПБ

Холодное и горячее водоснабжение, отопление, распределительные газопроводы

Соединение с натяжной термоусаживающейся полиэтиленовой муфтой пластмассовых труб из сшитого полиэтилена с металлической соединительной деталью

ПЭС

Внутренние системы холодного и горячего водоснабжения и отопления

Соединение с обжимной стальной гильзой

ПЭ, ПЭС, ПБ

Внутренние системы холодного и горячего водоснабжения и отопления

Соединение типа Vestol

ПЭС, ПЭМ

-"-

Механическое соединение с накидной гайкой

ПЭ, ПЭС, ПЭМ, ПБ

-"-


Примечание. В таблице приняты следующие условные обозначения: ПЭ - полиэтилен; ПЭС - сшитый полиэтилен; ПЭМ - металлополимерные трубы; ПП - полипропилен; ПВХ - поливинилхлорид; ПВХХ - хлорированный поливинилхлорид; ПБ - полибутен; ПВДФ - поливинилиденфторид; СП - стеклопластик.


Буртовые втулки получают литьем под давлением с последующей приваркой или приклейкой к основной трубе. На трубах небольших диаметров бурты могут изготавливаться путем горячего формования концов труб. Подобные разъемные соединения широко применяются для присоединения к разводящим системам различных санитарно-технических приборов и смесительной арматуре.

Для пластмассовых труб небольшого диаметра применяются такие пластмассовые соединительные детали, в которых при изготовлении устанавливаются металлические патрубки, имеющие с одной стороны насечку для лучшего сцепления с пластмассой при отливке, а с другой - стандартную трубную резьбу. С помощью такой детали также осуществляют разъемное резьбовое соединение.

Буртовые втулки для пластмассовых труб изготавливаются литьем под давлением и привариваются или приклеиваются к основной трубе.

Разъемные раструбные соединения с эластичным уплотнителем наиболее широко применяются в системах трубопроводов внутренней канализации, хотя некоторые фирмы изготавливают такие соединительные детали и для напорных трубопроводов, прокладываемых внутри зданий и под землей.

Эластичные уплотнители применяются как в виде кольца круглого поперечного сечения, так и другого профиля. В зависимости от назначения и свойств транспортируемого вещества в качестве материала для изготовления таких колец применяются резина и синтетические эластомеры различных марок.

Для ремонтных целей и временного устранения повреждений трубопроводов применяются ремонтные муфты с эластичной уплотняющей поверхностью.

Контактной сваркой встык соединяют пластмассовые трубы из соответствующих видов материалов с наружным диаметром свыше 63 мм и толщиной стенки более 4 мм.

Контактной сваркой в раструб обычно соединяют трубы с наружным диаметром до 63 мм. С помощью этого способа соединяют трубопроводы из полиэтилена, полипропилена, полибутена, некоторых фторполимеров.

Склейкой враструб выполняются неразъемные соединения пластмассовых трубопроводов, материал которых не позволяет получать достаточно прочные сварные соединения. Для увеличения площади склейку выполняют с использованием раструбных соединительных деталей. С помощью склейки осуществляют соединение трубопроводов из поливинилхлорида, хлорированного поливинилхлорида, стеклопластиков и АБС-пластмасс.

Большое практическое применение за последнее пятилетие получила раструбная сварка с закладным электронагревателем. Основными преимуществами этого способа сварки являются:

возможность осуществления сварки без перемещения свариваемых труб и деталей, что обеспечивает соединение длинномерных труб и упрощает ремонт трубопроводов;

возможность получения сварных соединений высокой надежности благодаря применению автоматизации и контроля.

С помощью этого способа соединяют трубы из полиэтилена, полипропилена, полибутена, а также выполняют неразъемные переходные соединения пластмассовая труба - металлическая соединительная деталь.

Применение пластмассовых труб потребовало использовать при их монтаже новые виды соединений и инструментов, ранее не применявшихся в этой области.

Трубы из сшитого полиэтилена и металлополимерные на основе сшитого полиэтилена не свариваются и не склеиваются и для их соединения между собой, с арматурой, приборами и трубами из других материалов применяют механические соединения в виде зажимных муфт разной конструкции.

Для монтажа хозяйственно-питьевых водопроводов в рамках санитарно-технического оборудования здания должны использоваться только такие зажимные муфты для пластмассовых труб, на конструкцию и прочность которых при растяжении воздействует сжатие стенки трубы между внутренней и внешней поверхностями конца трубы.

Общим элементом всех механических соединений пластмассовых труб является опорная втулка - штуцер. На штуцер надевается пластмассовая труба, а другой конец штуцера выполняется с резьбой для присоединения к арматуре, коллектору или прибору. В зависимости от вида трубы наружная поверхность штуцера имеет кольцевые выступы - для соединения труб из полиэтилена, сшитого полиэтилена и полибутена, а для соединения металлополимерных труб предусматриваются еще и кольцевые проточки с эластичными уплотнительными кольцами.




1.5. Маркировка и условные обозначения пластмассовых труб и соединительных деталей


С целью идентификации труб и соединительных деталей из пластмасс в нормативных документах на их производство в обязательном порядке приводится набор сведений, с необходимой и достаточной степенью характеризующих эти изделия. Кроме того, на наружной поверхности труб и соединительных деталей наносятся в сокращенном виде эти сведения. Требования к условным обозначениям, а также маркировка труб и соединительных деталей регламентированы международным стандартом ISO/TC SC4 651 "Условные обозначения и маркировка труб и соединительных деталей" и должны содержать следующую информацию.

1. Сведения о сертификации продукции обычно даются в соответствии с EN ISO 9001 Системы качества - Модель обеспечения качества при проектировании, монтаже и обслуживании" или с техническими требованиями соответствующего стандарта, по которому выпускается изделие.

2. Зарегистрированное наименование производителя или его товарный знак. Иногда приводится торговая марка продукции, под которой изготовитель ее выпускает.

3. Сведения о присвоении знака качества предприятию-изготовителю, подтверждающего способность предприятия выпускать продукцию стабильного качества в соответствии с EN ISO 9002 Системы качества - Модель обеспечения качества при производстве, монтаже и обслуживании или соответствующим национальным стандартам.

4. Номер и наименование международного или национального стандарта на производство данного вида продукции. Существует практика принятия международного стандарта и (или) стандарта Европейского сообщества в качестве национального.

5. Обозначение используемого материала. Обычно одновременно приводятся сведения о технологии изготовления этого материала, а также классификация по  - минимальная длительная прочность - классификационный признак DIN EN ISO 12162. Например:

ПЭ 63, ПЭ 80 и ПЭ 100 Обозначение полиэтилена с 
 6,3; 8 и 10.

РЕХ а, b, с - обозначение сшитого полиэтилена, где буквы обозначают способ сшивки: а - пероксидным способом; b - обработка газом силаном; с - облучение потоком электронов.

6. Наружный диаметр и минимальная толщина стенки. В России принята метрическая система мер и пластмассовые трубы нормализуются по наружному диаметру согласно ГОСТ 29324-92 (ISO 161-1/96) "Трубы из термопластов. Наружные диаметры и номинальные давления. Метрическая серия". Наружные диаметры труб представлены следующим размерным рядом, мм: 10; 12; 16; 20; 25; 32; 40; 50; 63; 75; 90; 110; 125; 140; 160; 180; 200; 225; 250; 280; 315; 355; 400; 450; 500; 560; 630; 710; 800; 900; 1000 и 1200.

После размеров наружного диаметра и толщины стенки указываются размерное соотношение 
 и трубная серия , где  - наружный диаметр/толщина стенки, a .

2*. Номинальное давление (
), обычно выражаемое в барах (кгс/см). Под подразумевается номинальное давление (класс давления) - постоянное внутреннее давление воды при +20 °С, которое трубы и соединительные детали могут безотказно выдерживать в течение 50 лет.
________________
* Нумерация соответствует оригиналу. - Примечание изготовителя базы данных. 

При классификации труб через 
 обязательно указываются данные по максимально допустимым параметрам эксплуатации (рабочее давление, температура, срок службы).

В ряде случаев трубы классифицируются не по 
, а по типам, представляющим собой номинальные давления, например, ГОСТ 18599-2001 "Трубы напорные из полиэтилена". Соотношение между типами труб  и  приведены в табл.3.1.

Следует отметить, что в дюймовой серии эти соотношения другие, т.к. кроме размеров в дюймах давление измеряется также в других единицах - фунтах на квадратный дюйм (psi).

1 квадратный дюйм равен 6,452 см, а фунт - 0,45359 кг.

Для сведения следует иметь в виду, что в дюймовой серии имеют место следующие соотношения между размерными характеристиками:

           
 

12,5

8

5

4

3,2

 

26

17

11

9

7,4

8. Среда, максимальное рабочее давление. В маркировке отмечается возможность транспортировки бытового газа со стандартным рабочим давлением и питьевой воды. Например, "Газ 3", "GAZ 4", "питьевая", "drinking water".

На трубах, предназначенных для транспортировки горячей воды для водоснабжения или отопления, указывается допускаемое сочетание давление/температура, а в ряде случаев и нормативный документ, которым эти параметры регламентированы.

9. Технологический режим сварки. Иногда указывается на соединительных деталях в виде оттиска на наружной поверхности детали, получаемого путем гравировки литьевой формы или наклеиваемого на деталь штрихкода, или к каждой детали прикладывается идентификационная карточка со штрихкодом и магнитной лентой (расположена с оборотной стороны карточки), несущая информацию о параметрах сварки.

10. Дата изготовления, номер партии. Обычно указываются две последние цифры года изготовления и информация в объеме 15 знаков. Эта информация содержит месяц изготовления, порядковый номер недели, а иногда десятидневки месяца, номер смены, машины, линии. В обязательном порядке указывается номер партии.

11. Страна или город нахождения производителя. Указывается в случае поставок труб и соединительных деталей за рубеж. Маркировка на трубах в зависимости от диаметра наносится через 0,5…1 м. Одновременно на ниx наносится метраж. Предполагается, что при монтаже маркированных труб маркировка должна оставаться видной. Это позволяет быстрее ориентироваться при обслуживании или ремонте трубопроводов.

Ниже приводятся примеры маркировки труб и соединительных деталей на рынке трубной продукции в России.

1. ANDFRAGAZ-SSR-PE80-GAZ4-160х14.6-SDR 11-E-039701-ISO 4437:

ANDFRAGAZ - наименование производителя труб;

SSR - обозначение того, что трубы производятся по лицензии фирмы Sosomo-Socotub;

PE8O - полиэтилен, классифицированный как MRS 8;

GAZ4 - труба предназначена для транспортировки бытового газа с рабочим давлением до 4 бар (0,4 МПа);

160х14,6 - номинальные наружный диаметр и толщина стенки;

SDR 11 - стандартизированное размерное соотношение;

Е - обозначение недели изготовления партии;

039701 - номер партии, год и месяц изготовления;

ISO 4437 - международный стандарт на производство полиэтиленовых труб для газоснабжения.

2. A KILKER 513 NF F РЕ 80 GAZ 4 125x11,4 1992 М 139 S 121:

A KILKER 513 - наименование производителя труб и сведения о сертификации продукции (А) и производителя (513);

NF F - обозначение того, что трубы изготавливаются в соответствии с французским национальным стандартом;

РЕ 80 - полиэтилен, классифицированный как MRS 8;

GAZ4 - труба предназначена для транспортировки бытового газа с рабочим давлением до 4 бар (0,4 МПа);

125x11,4 - номинальные наружный диаметр и толщина стенки (SDR 11);

1992 М - год и десятидневка изготовления партии;

139 - номер партии;

S - обозначение происхождения материала;

121 - указатель метража.

3. Wirsbo-PEX 16x2,2 DVGW K178 MPA-DA PE-Xa DIN 16892/93 SB 42 89 12:

Wirsbo-PEX - труба из сшитого полиэтилена фирмы Wirsbo;

16x2,2 - номинальные наружный диаметр и толщина стенки;

DVGW K178 - обозначение допустимости для транспортировки питьевой воды согласно нормам германской ассоциации "Deutscher verein des gaz und wasserfaches" - DVGW;

MPA-DA - обозначения соответствия свойств установленным нормам;

РЕ-Ха - полиэтилен, сшитый пероксидным способом (процесс "Engel)";

DIN 16892/93 - стандарт, устанавливающий рабочие соотношения температуры и давления для труб из сшитого полиэтилена;

SB 42 89 12 - обозначение материала (SB), номера машины (42), года (89), недели (12).

4. 3/4" NIBCO Flow Guard Gold CPVC HC-SDR 11 CPVC 4120-100 PSI PR WATER AT 180° F DRINKIN WATER-ASTMD 2846 CSA В 137,6 TUBYNG<DO 5/25/96 M 3A2 MADE in USA:

Труба 3/4", изготовленная фирмой NIBCO, c SDR 11 из хлорированного поливинилхлорида CPVC для максимального рабочего давления воды 100 psi и температуры 180° F, пригодная для питьевого водоснабжения (DRINKTN WATER). Труба изготовлена по ASTM D 2846 в 1996 году.

5. REHAU RAUPINK 25x3,5 136062 sauerstoffdicht DIN 4726 RAU-UPE RE-Xa DIN 16892/93 PB 12/60 °С - PB 11/70 °С - PB 9/90 °С М 15.03.98.

Двухслойная труба, изготовленная фирмой REHAU с наружным диаметром 25 мм, толщина стенки 3,5 мм, диффузионным барьером из этиленвинилового спирта EVOH, удовлетворяющего норме кислородопроницаемости согласно с DIN 4726. Труба изготовлена из сшитого полиэтилена РЕХа в соответствии с DIN 16892/93 и предназначена для эксплуатации при следующих соотношениях давление (бар) - температура (°С): 12/60; 11/70; 9/90. Труба изготовлена в 1998 г.

6. HENKO VERBUNDESANDWICHTUBE 16[2 РЕ-Хс /АI/РЕ-Хе sauerstoffdichtheit und Zeitstand-Innendruck festigkeit gepzuft entspreсhend DIN 4725/4729, IKR-UNI Stuttgart:

Многослойная труба, изготовленная фирмой HENCO, с наружным диаметром 16 мм и толщиной стенки 2 мм из сшитого полиэтилена с диффузионным барьером из алюминия. Труба удовлетворяет требованиям DIN 4726/4729, изготовлена в городе Штуттгарт.

7. Трубы из сшитого полиэтилена производства фирмы "Бир-Пекс" (г.Саратов) имеют следующую маркировку: 

8. Трубы из полипропилена рандом сополимера производства НПО "Стройполимер"(г.Москва) имеют следующую маркировку: 

9. Пример обозначения канализационных труб и фасонных деталей из полипропилена фирмы Uponor приведен ниже: 

Пример маркировки труб

Пример маркировки фасонных частей


Примечание. Код …..*
________________
* Брак оригинала. - Примечание изготовителя базы данных. 

Обычно сертифицированная продукция обозначается следующими …..*
________________
* Брак оригинала. - Примечание изготовителя базы данных.


   
 


Сертификат соответствия международному стандарту

 

Госстандарт России

Сертификат соответствия со стандартами Российской Федерации

 

Госкомсанэпиднадзор России

Гигиенический сертификат

 


Сертификат пожарной безопасности: не горючий. ВНИИПО (г.Балашиха Московская обл.)


Указанные выше сертификаты выдаются только на материалы, прошедшие тестирования в соответствующих органах.





2. НОРМАТИВНЫЕ ССЫЛКИ


В настоящих ОСН использованы ссылки на следующие документы:

СНиП 2.04.01-85*. "Внутренний водопровод и канализация зданий".

СНиП 2.04.02-84*. "Водоснабжение. Наружные сети и сооружения".

СНиП 2.04.03-85. "Канализация. Наружные сети и сооружения".

СНиП 2.04.05-91*. "Отопление, вентиляция и кондиционирование".

СНиП 2.04.07-86*. "Тепловые сети".

СНиП 2.04.14-88. "Тепловая изоляция оборудования и трубопроводов".

СНиП 3.02.01-87. "Земляные сооружения, основания и фундаменты".

СНиП 3.05.01-85. "Внутренние санитарно-технические системы".

СНиП 3.05.06-85. "Электротехнические устройства".

СНиП 11.01-2003. "Инструкция о порядке разработки, согласования, утверждения и составе проектной документации на строительство предприятий, зданий и сооружений".

СНиП 12-03-2001. "Безопасность труда в строительстве. Часть I. Общие требования".

СНиП 12-04-2002. "Безопасность труда в строительстве. Часть 2. Строительное производство".

СНиП 42-01-2002. "Газораспределительные системы".

СП 40-102-2000. "Проектирование и монтаж трубопроводов систем водоснабжения и канализации из полимерных материалов. Общие требования".

СН 550-82 (с изм.) "Инструкция по проектированию технологических трубопроводов из пластмассовых труб".

ГОСТ 2405-88. "Манометры, вакуумметры, мановакуумметры, напоромеры, тягомеры и тягонапоромеры. Общие технические условия".

ГОСТ 2768-84* "Ацетон технический. Технические условия".

ГОСТ 2874-82*
. "Вода питьевая. Гигиенические требования и контроль за качеством".
________________
 На территории Российской Федерации действует ГОСТ Р 51232-98, здесь и далее по тексту. - Примечание изготовителя базы данных.

ГОСТ 6823-2000. "Глицерин натуральный сырой. Общие технические условия".

ГОСТ 9968-86* "Метилен хлористый технический. Технические условия".

ГОСТ 12.1.005-88*. ССБТ "Общие санитарно-гигиенические требования к воздуху рабочей зоны".

ГОСТ 12.3.030-83*. ССБТ. "Переработка пластических масс. Требования безопасности".

ГОСТ 18599-2001 "Трубы напорные из полиэтилена. Технические условия".

ГОСТ 22689.0-89 - ГОСТ 22689.2-89. "Трубы полиэтиленовые канализационные и фасонные части к ним".

ГОСТ 29324-92 (ИСО 161-1-96). "Трубы из термопластов для транспортирования жидкостей. Номинальные наружные диаметры и номинальные давления. Метрическая серия".

ГОСТ Р 50838-95*. "Трубы из полиэтилена для газопроводов".

ГОСТ Р 51613-2000. "Трубы напорные из непластифицированного поливинилхлорида. Технические условия".

ТУ 6-05-251-95-87. "Клей ГИПК-127 для напорных труб из ПВХ".

ТУ 6-05-1983-87. "Трубы из полиэтилена НД марки 298-137".

ТУ 6-19-051-6-87. "Трубы для электропроводок гофрированные из полиэтилена низкого давления".

ТУ 6-19-374-87. "Трубы радиационно-химические модифицированные из полиэтилена НД для подводок горячего водоснабжения".

ТУ 6-19-051-419-84. "Трубы для электропроводок гофрированные из непластифицированного поливинилхлорида".

ТУ 6-19-215-86. "Трубы для электропроводок гладкие из непластифицированного поливинилхлорида".

ТУ 6-19-224-83. "Трубы дренажные гофрированные из полиэтилена низкого давления".

ТУ 6-19-231-87. "Трубы напорные из непластифицированного поливинилхлорида".

ТУ 6-19-307-86. "Трубы и патрубки из непластифицированного поливинилхлорида для канализации".

ТУ 6-19-359-97. "Детали соединительные из полиэтилена низкого давления для газопровода".

ТУ 6-49-4-88. "Трубы напорные из непластифицированного поливинилхлорида ПВХ-125".

ТУ 6-49-33-92. "Части фасонные из непластифицированного поливинилхлорида для канализационных труб".

ТУ 6-49-0203534-94-93. "Трубы из непластифицированного поливинилхлорида для водостоков".

ТУ 2247-001-348-681-12-00. "Шланги из пластифицированного поливинилхлорида однослойные армированные синтетической нитью".

ТУ 2247-002-348-681-12-00. "Шланги напорные из полиэтилена (ПВД) однослойные армированные синтетической нитью".

ТУ 2248-001-07629379-96. "Трубы металлополимерные".

ТУ 2248-001-5284398-2003. "Трубы из полипропилена для наружной канализации".

ТУ 2248-001-29325094-97. "Трубы металлополимерные".

ТУ 2248-001-51169444-00. "Трубы дренажные из поливинилхлорида".

ТУ 2248-004-076229379-97. "Металлополимерные трубы".

ТУ 2248-006-41989945-98. "Трубы из полипропилена ("Рандом Сополимер") PPR класса PN 20".

ТУ 2248-006-41989945-97. "Трубы напорные из сополимера полипропилена "Рандом Сополимер" (PPRC)".

ТУ 2248-011-41989945-98. "Соединительные детали из сополимеров полипропилена "Рандом Сополимер" РР-R тип 3 (PPRC)".

ТУ 2248-032-002-84-581-98. "Трубы напорные и соединительные детали к ним из сополимеров пропилена для систем холодного и горячего водоснабжения и отопления".

ТУ 2248-036-00203536-97 (с изм.1, 2). "Трубы многослойные металлополимерные".

ТУ 2248-039-00284581-99. "Трубы напорные из сшитого полиэтилена (РЕХВ)".

ТУ 2248-043-002-84-581-2000. "Трубы и фасонные части из полипропилена и сополимеров пропилена для систем внутренней канализации".

ТУ 2296-011-26598466-96. "Трубы стеклопластиковые на основе полиэфирных смол".

ТУ 2296-250-24046478-95. "Трубы стеклопластиковые на основе эпоксидных смол".

ТУ 4926-005-41989945-97. "Трубы и патрубки из полипропилена для канализации".

ТУ 4926-010-41989945-98. "Части фасонные из полипропилена для канализационных труб".

ТУ 4926-012-41989945-99. "Трубы из полипропилена".

ТУ 4926-010-42943419-97. "Трубы канализационные раструбные из полипропилена".

ТУ 63-072-01115-86. "Трубы электротехнические гофрированные из вторичного полиэтилена".

ТУ 10 РФ 13.01-92. "Детали соединительные из полиэтилена для канализационных трубопроводов".

ТУ 10 РФ 13.02-92. "Трубы из полиэтилена для систем внутренней канализации зданий".

Ведомственные строительные нормы по проектированию и монтажу внутренних систем водоснабжения из полипропиленовых труб "Рандом Сополимер" (PPRC) (
BCH 47-96).

Технические рекомендации по проектированию и монтажу внутренних систем канализации зданий из полипропиленовых труб и фасонных частей (
ТР 83-98).

Технические рекомендации по проектированию и монтажу внутреннего водопровода зданий из металлополимерных труб (
ТР 78-98).

"Правила устройства и безопасной эксплуатации сосудов, работающих под давлением".

Руководство НПО "Стройполимер" по проектированию и монтажу системы холодного и горячего водоснабжения из полипропиленовых труб "Рандом Сополимер" (РР-R, тип 3) для зданий различного назначения (ЗАО НПО "Стройполимер", 2003 г.).

Руководство НПО "Стройполимер" по проектированию, монтажу и эксплуатации системы внутренней канализации из полипропиленовых труб (ЗАО НПО "Стройполимер", 2003 г).



3. ПРИЕМКА, ТРАНСПОРТИРОВКА И ХРАНЕНИЕ ТРУБ, АРМАТУРЫ И ДЕТАЛЕЙ ТРУБОПРОВОДОВ

3.1. Поставляемые на монтаж трубы, арматура и детали трубопроводов должны быть снабжены паспортом (сертификатом) завода-изготовителя и должны соответствовать требованиям нормативной документации на их изготовление.

3.2. Допускается применение пластмассовых труб и соединительных деталей зарубежного производства, не уступающих по показателям требованиям нормативных документов (СНиП, ГОСТ, ТУ). Трубы и соединительные детали для подачи по ним воды на хозяйственно-питьевые нужды требуется дополнительное согласование с органами санитарно-эпидемиологической службы*.
________________
* Текст соответствует оригиналу. - Примечание изготовителя базы данных. 

3.3. Для изготовления деталей, узлов и монтажа трубопроводов допускается использовать трубы, имеющие на поверхности трещины, задиры, надрезы и царапины в осевом направлении глубиной не более 3% и в кольцевом не более 5% от толщины стенки трубы, но не превышающих 1 мм в любом направлении (для газопроводов не более 0,5 мм в осевом направлении и 0,7 мм в кольцевом направлении), а также трубы, имеющие торцы с забоинами глубиной не более 2 мм. Овальность сечения труб не должна превышать по разности диаметров 10%. Трубы, имеющие дефекты, превышающие указанные размеры, подлежат отбраковке. Контроль размеров механических повреждений осуществляется аналогично контролю размеров сварных швов (см. разд.5). Если у отбракованных труб недопустимые дефекты имеют локальный характер, то после удаления участков с этими дефектами отрезки труб используются для монтажа или изготовления соединительных деталей и узлов.

3.4. При хранении, погрузке, транспортировке и разгрузке пластмассовые трубы, соединительные детали, пластмассовая арматура, сварочные прутки и резиновые уплотнительные кольца должны оберегаться от механических повреждений и деформаций, а также от загрязнений и попадания в них жиров и нефтепродуктов. Особая осторожность необходима в обращении с трубами из поливинилхлорида и полипропилена при отрицательных температурах и температурах, близких к 0 °С. Запрещается производить погрузку, транспортировку и разгрузку труб и соединительных деталей из поливинилхлорида и полипропилена при температуре ниже минус 10 °С, труб из полиэтилена низкого давления - ниже минус 20 °С и из полиэтилена высокого давления - ниже минус 30 °С.

3.5. При транспортировке трубы необходимо укладывать на ровную поверхность транспортных средств (машин, платформ, прицепов, плетевозов и т.д.), предохраняя их от острых углов и ребер металлических предметов. Длина свешивающихся с транспортного средства концов труб не должна превышать 1,5 м, при этом трубы диаметром до 50 мм должны быть увязаны в пакеты. При погрузке и разгрузке не допускается трубы сбрасывать с транспортных средств, а также перемещать волоком.

3.6. Пластмассовые трубы и соединительные детали следует хранить в помещении, а на период монтажа допускается хранение под навесом или под открытым небом, но с условием исключения попадания на них солнечных лучей (например, укрывая брезентом). При хранении в закрытом помещении трубы и детали должны располагаться не менее чем на 1 м от нагревательных приборов, при этом температура помещения не должна превышать 30 °С.

3.7. Пластмассовые трубы следует хранить в горизонтальном положении рассортированными по типоразмерам (с указанием материала) на стеллажах со сплошным и ровным настилом. Допускается хранение в штабелях на спланированной площадке с "постелью" из мягкого грунта (рис.3.1).


Рис.3.1. Схема укладки раструбных труб из поливинилхлорида в штабель


Рис.3.1. Схема укладки раструбных труб из поливинилхлорида в штабель:

1 - труба; 2 - клин; 3 - деревянный брусок



Штабеля с трубами из поливинилхлорида могут укладываться на деревянные брусья с закругленными краями, которые должны иметь ширину не менее 10 см, толщину около 5 см и быть не менее чем на 30 см длиннее (с каждой стороны), чем ширина сложенных труб. Расстояние между брусьями - не более 80 см. Укладка труб на брусьях производится с попеременным изменением положения раструба и гладкого конца трубы с использованием веревки для предотвращения раскатывания труб. Высота штабеля определяется с таким расчетом, чтобы вес труб верхних рядов не вызывал деформацию труб нижних рядов, и не должна превышать: для труб типа "Т" - 2,6 м; типов "С" и "СЛ" - 2,3 м; типа "Л" - 1,7 м при температуре окружающего воздуха до 25 °С.

3.8. Пластмассовые трубы, соединительные детали и трубные заготовки, доставляемые на объект в зимнее время, перед их монтажом в зданиях должны быть предварительно выдержаны при положительной температуре не менее 2 ч.

3.9. Несоблюдение правил хранения и транспортировки приводит к ухудшению свойств материала труб и деталей, а также к изменению их геометрических размеров. Гарантийный срок хранения пластмассовых труб - два года со дня изготовления. По истечении указанного срока перед использованием трубы и детали должны быть проверены на соответствие нормативным документам.

3.10. В случае необходимости долговременного хранения резиновых уплотнительных колец они должны храниться в недеформированном состоянии в темных закрытых помещениях, где не работают нагревательные приборы, не должны соприкасаться со смазочными материалами, нефтепродуктами и химикатами, а также должны быть защищены от воздействия газов, оказывающих вредное влияние на резину. Их кратковременное хранение возможно при температуре от минус 10 до плюс 25 °С на расстоянии 1 м от отопительных приборов, упакованными в мягкую тару, ящики или картонные коробки массой брутто не более 50 кг, а также связанными в пачки без упаковки. Конструкция тары и способ укладки в ней колец должны исключать возможность повреждения колец при транспортировке и хранении. В монтажных условиях кольца должны храниться в ящиках или закрытых ларях, защищающих их от солнечных лучей и загрязнений.



4. ТРУБОЗАГОТОВИТЕЛЬНЫЕ РАБОТЫ

4.1. Механическая обработка труб и трубных заготовок

4.1.1 Разметка труб. Разметка - нанесение на трубу разметочных линий, указывающих места перереза трубы под различными углами для изготовления соединительных деталей, места вырезки или сверловки отверстий в трубе, места начала и конца изгиба при гибке труб, участки трубы, приходящиеся на раструбы, отбортовки, утолщенные бурты и др.

Разметку следует выполнять с учетом максимального использования труб и сокращения отходов. При этом нужно учитывать величину технологического припуска на толщину реза, механическую обработку торцов, сварку и др. Для разметки используют разметочные столы и плиты. Трубу укладывают на стол или на установленные на нем призмы. При необходимости закрепляют трубу в тисках или зажимных приспособлениях с мягкими прокладками во избежание механических повреждений поверхности трубы.

Разметку труб при изготовлении соединительных деталей и узлов трубопроводов применяют при отсутствии современных безразметочных средств механической обработки труб, а также при изготовлении отдельных частей трубопроводов в условиях монтажной площадки.

4.1.2. Резка труб. Резку, как и все операции механической обработки труб, производят при температуре воздуха не выше 35 °С. Резку пластмассовых труб в большинстве случаев выполняют механическим способом на трубоотрезных станках дисковыми пилами толщиной 1,5...2 мм, маятниковыми пилами с помощью абразивных армированных кругов толщиной 3 мм, электроножовками и пневмоножовками с помощью ножовочных полотен по металлу, а при небольших объемах в условиях монтажной площадки - ручными ножовками, применяемыми для резки металлических труб.

Для получения качественных торцов резку производят плавно, без рывков. Скорость резания выбирают с таким расчетом, чтобы труба не размягчалась от нагревания и пластмасса не налипала на режущий инструмент. Рекомендуемая скорость резания пластмассовых труб дисковыми стальными пилами 36 м/с, абразивными армированными кругами - до 60 м/с.

4.1.3. Для резки пластмассовых труб диаметром до 160 мм под различными углами применяют станок, где в качестве режущего инструмента служит стальная дисковая пила диаметром 500 мм (рис.4.1).

Рис.4.1. Устройство для ручной резки труб


Рис.4.1. Устройство для ручной резки труб

1 - струбцина; 2 - основание; 3 - нижний полухомут; 4 - сменные полукольца; 5 - верхний откидной полухомут; 6 - винт; 7 - стойка с направляющим пазом

4.1.4. На рис.4.2 показан станок, предназначенный для резки пластмассовых труб диаметром до 315 мм на патрубки под различными углами. Габариты станка, мм: 2245x1000x1400, масса 640 кг.


Рис.4.2. Станок для резки пластмассовых труб диаметром до 315 мм


Рис.4.2. Станок для резки пластмассовых труб диаметром до 315 мм

1 - станина; 2 - пусковые кнопки; 3 - маховик; 4 - суппорт; 5 - поворотный зажим; 6 - направляющие; 7 - дисковая пила; 8 - кожух пилы; 9 - контргруз; 10 - электродвигатель

4.1.5. В последнее время в трубозаготовительных мастерских и на монтажных площадках для резки пластмассовых труб диаметром до 125 мм применяют обычно маятниковые пилы ПМ 300/400, в которых в качестве режущего инструмента служат абразивные армированные круги диаметром 300 и 400 мм. При этом достигается высокое качество поверхности отрезанного торца трубы. Маятниковая пила ПМ 300/400 изображена на рис.4.3.


Рис.4.3. Маятниковая пила ПМ 300/400

Рис.4.3. Маятниковая пила ПМ 300/400

1 - станина; 2 - тиски; 3 - абразивный круг; 4 - электродвигатель; 5 - маятник



4.1.6. Трубы диаметром до 90 мм режут с помощью маятниковой пилы ПМ 300/80 (рис.4.4), которую можно установить и закрепить на верстаке или столе. Конструкция тисков позволяет зажимать и резать трубы под углом 45...90 град. По отношению к абразивному армированному кругу.


Рис.4.4. Маятниковая пила ПМ 300/80


Рис.4.4. Маятниковая пила ПМ 300/80

1, 5 - неподвижная и подвижная губки тисков; 2 - ось перемещения губок; 3 - упор; 4 - шпиндельный узел; 6 - защитная маска; 7 - абразивный круг; 8 - рукоятка; 9 - кожух круга; 10 - пускатель; 11 - клиноременная передача; 12 - электродвигатель; 13 - маятник; 14 - станина

4.1.7. В условиях монтажной площадки резку пластмассовых труб часто выполняют вручную ножовками или пилами. При резке ручными ножовками рекомендуется применять приспособления с направляющими для полотна перпендикулярно оси трубы. На рис.4.5 показано устройство для резки пластмассовых труб наружным диаметром 20...22 мм с помощью ручной ножовки. Направляющий паз в стойке 7 позволяет обеспечить перпендикулярность реза относительно оси разрезаемой трубы.


Рис.4.5. Станок для резки пластмассовых труб диаметром до 160 мм

Рис.4.5. Станок для резки пластмассовых труб диаметром до 160 мм



4.1.8. Для ликвидации ручного труда при резке пластмассовых труб в монтажных условиях последнее время создано несколько моделей электроножовок. Их используют также вместе в мастерских на стационарных установках для резки торцов труб непосредственно перед сваркой и при изготовлении соединительных деталей.

4.1.9. Образование отверстий. Отверстия в пластмассовых трубах выполняют на сверлильных станках или ручными электрическими сверлилками с помощью перовых и спиральных сверл, а также специальных циркульных резцов и трубных сверл.

4.1.10. Для отверстий диаметром до 15 мм применяют перовые сверла. Угол заточки перовых сверл 60…70°, подача при сверлении отверстий в пластмассовых трубах 0,1…0,3 мм на один оборот. Для получения отверстий диаметром 15...50 мм используют стандартные спиральные сверла с углом заточки 100...130°. Для облегчения отвода стружки на сверлах рекомендуется выполнять двойную заточку, а винтовые канавки полировать. Диаметр сверла должен быть на 0,05...0,15 мм больше отверстия, так как оно после сверления уменьшается.

4.1.11. Отверстия диаметром свыше 50 мм вырезают циркульными резцами с передним углом заточки 50° или специальными трубными сверлами (рис.4.6), представляющими собой цилиндрическую фрезу. Трубное сверло - это полый цилиндр с зубьями и хвостовиком для закрепления в патроне станка. Высота и шаг зубьев 5...7 мм, угол заострения их 80...90°, частота вращения до 3. За один оборот фреза режет стенку трубы на глубину 2...6 мм. Перед вырезкой отверстий пластмассовую трубу закрепляют в зажиме во избежание трещин и сколов. В процессе сверления труб сверло необходимо периодически выводить из отверстия для охлаждения и удаления стружки. Охлаждать инструмент и места сверления рекомендуется сжатым воздухом.


Рис.4.6. Трубное сверло

Рис.4.6. Трубное сверло

1* - конус Морзе; 2 - фреза; 3 - направляющая втулка; 4 - шуруп

________________
* В бумажном оригинале цифра 1 на рисунке отсутствует. - Примечание изготовителя базы данных.



4.1.12. Обработка торцов труб. В условиях трубозаготовительных мастерских обработку торцов пластмассовых труб диаметром 50...225 мм выполняют на специальных станках для механической обработки труб. На этих станках выполняются следующие операции: обработка внутренних и наружных фасок; торцовка труб с прямым и косым резом; обработка концов труб для элементов соединительных деталей; сверление отверстий в трубах для переходных тройников.

4.1.13. В условиях монтажной площадки торцовка пластмассовых труб диаметром 50...315 мм и снятие фасок производится с помощью комплекта специальных устройств (рис.4.7).

Рис.4.7. Устройство для торцовки и снятия фасок на концах пластмассовых труб в монтажных условиях


Рис.4.7. Устройство для торцовки и снятия фасок на концах пластмассовых труб в монтажных условиях


4.2. Формование соединительных деталей

4.2.1. Формованием изготовляют втулки с утолщенными буртами под стальные свободные фланцы, отбортовки концов труб, раструбы, переходы, горловины переходных тройников, а также производят калибровку концов труб.

4.2.2. Изготовление втулок под фланец с утолщенными буртами. При монтаже трубопроводов из полиэтилена и полипропилена применяют разъемные соединения со стальными свободными фланцами на утолщенных буртах, отформованных на концах труб или коротких патрубках. Основные размеры формованных втулок с утолщенными буртами приведены в табл.4.1.


Табл.4.1


Основные размеры формованных втулок под металлический фланец, мм

               
     

, не менее

 
       

Полиэтилен высокого давления

Полиэтилен низкого давления, полипропилен

       

тип С

тип Т

тип С

тип Т

25

51

36

125

6

8

4

6

32

63

37

125

7

8

7

8

40

74

45

125

8

13

8

9

50

86

55

125

10

17

10

12

63

94

68

170

14

16

12

14

75

116

80

170

15

17

13

15

90

130

95

170

17

20

16

20

100

150

115

170

22

24

19

23

125

170

130

270

25

28

20

23

140

178

145

270

-

-

21

25

160

205

165

270

-

-

25

28

180

205

165

270

-

-

28

30

200

232

205

270

-

-

30

35

225

265

230

270

-

-

35

40



Технологический процесс формования утолщенных буртов состоит из следующих операций: разогревают конец трубы, закрепляют его, формуют, охлаждают отформованный бурт и освобождают готовое изделие от закрепления.

Длина нагреваемого участка конца трубы должна быть в 1,5 раза больше длины формуемого участка трубы.

4.2.3. Электронагревательное устройство для труб диаметром 63...160 мм (рис.4.8) представляет собой цилиндрический корпус 1, внутри которого имеются ТЭНы 2 (трубчатые нагревательные элементы) мощностью 2,8 кВт. Между ТЭНами и разогреваемой трубой размещены экраны 3 с отверстиями диаметром 3...4 мм, служащие для равномерного распределения нагретого воздуха по поверхности трубы. Воздух от компрессора, поступающий из распределительной камеры 5 по специальным каналам, подходит к ТЭНам, нагревается об их поверхность и переносит теплоту на наружную и внутреннюю поверхности нагреваемой трубы 4.


Рис.4.8. Схема устройства для нагрева концов труб


Рис.4.8. Схема устройства для нагрева концов труб

4.2.4. Температуру нагрева воздуха внутри электронагревательного устройства (табл.4.2) поддерживают постоянной в заданных пределах с помощью терморегуляторов. Участок трубы, нагретый до температуры формования, не должен терять форму устойчивости. Рекомендуемое время нагрева концов пластмассовых труб приведено в табл.4.3.


Табл.4.2


Оптимальная температура теплоносителя и температура нагрева конца трубы

     

Материал трубы

Оптимальная температура теплоносителя ±10 °С

Температура нагрева конца трубы, °С

Полиэтилен ПЭВД

200

115...125

Полиэтилен ПЭНД

220

145...155

Полипропилен

260

170...180



Табл.4.3


Продолжительность нагрева концов пластмассовых труб, мин, в зависимости от 

     

, мм

Продолжительность нагрева труб

 

из ПЭВД

из ПЭНД, ПП

63

5...7

1,5...3

110

10

4...6

160

-

7...11


Примечание. Время нагрева конца трубы зависит от ее диаметра и толщины стенки. В среднем оно составляет 1...1,5 минуты на один мм толщины стенки трубы.


4.2.5. Формование утолщенных буртов на концах труб из полиэтилена выполняют также и на стационарных установках, в комплект которых входят матрицы и пуансоны (рис.4.9) различных диаметров, которые применяют на установке в зависимости от диаметров формуемых труб. Матрица выполнена разъемной для возможности зажатия труб и извлечения отформованных буртов и состоит из нижней 1 и верхней 2 полуматриц, которые крепят к полухомутам зажимного устройства. В матрице предусмотрены съемные вкладыши 3 для зажатия труб с различными допусками (4...5 мм) по наружному диаметру. Пуансон 4, соединенный с планшайбой 5, навинчивают на шток пневмоцилиндра. Внутри пуансона имеется полость, в которую подается вода для охлаждения отформованной детали в матрице.


Рис.4.9. Формующий инструмент для утолщения буртов


Рис.4.9. Формующий инструмент для утолщения буртов

4.2.6. Отбортовка труб. Отбортовку на пластмассовых трубах выполняют для получения разъемных соединений безнапорных трубопроводов с помощью стальных свободных фланцев.

Последовательность технологического процесса отбортовки пластмассовых труб из ПЭВД, ПЭНД, ПП и ПВХ аналогична последовательности процесса формования утолщенных буртов. Длина нагреваемого участка также должна быть в 1,5 раза больше выпуска конца трубы под отбортовку. Высота отбортовки принимается равной толщине стенки трубы.

Нагрев концов пластмассовых труб при отбортовке (кроме труб из фторопласта) производится при помощи таких же электронагревательных устройств горячим воздухом или инфракрасным излучением, как и для формования утолщенных буртов. Кроме того, при отбортовке разрешается для нагрева конца труб применять глицериновые ванны. Нагрев материала трубы производят до высокоэластичного состояния. Температуру теплоносителя (воздуха или глицерина) внутри электронагревательного устройства или ванны выбирают в соответствии с табл.4.4; поддерживают температуру теплоносителя с помощью автоматических терморегуляторов или ручным регулированием по показаниям термометров.


Табл.4.4


Температура теплоносителя (воздух, глицерин) при отбортовке пластмассовых труб

     

Материал трубы

Температура теплоносителя

 

воздуха ±10 °С

глицерина ±5 °С

ПЭВД

135

105

ПЭНД

150

125

ПП

185

165

ПВХ

160

130



Температурные режимы нагрева трубных заготовок при формовании утолщенных буртов (см. табл.4.2) и при отбортовке (см. табл.4.4) отличаются друг от друга, поскольку при формовании утолщенных буртов заготовки нагревают до вязкотекучего состояния материала, а при отбортовке - до высокоэластичного. При этом температуру используемого теплоносителя (воздух, глицерин и др.) подбирают экспериментально с учетом его теплофизических свойств.

Отбортовку на конце трубы формуют пуансоном, вдвигаемым внутрь размягченного конца трубы, и прижимным фланцем, оформляющим торцевую поверхность отбортовки (рис.4.10).


Рис.4.10. Схема формования отбортовки


Рис.4.10. Схема формования отбортовки

а - положение до формования; б - положение по окончании формования; 1 - пуансон; 2 - прижимной фланец; 3 - труба; 4 - труба с отбортовкой

4.2.7. В связи с тем, что фторопластовые трубы практически не свариваются, основными монтажными соединениями этих труб являются соединения на металлических фланцах и отбортовках. Отбортовку фторопластовых труб производят с предварительным нагревом труб или без нагрева. Отбортовку с нагревом труб из фторопласта с  до 100 мм производят в один прием, а труб с  более 100 м - в два приема. При этом сначала выполняют раздачу конца трубы конусной оправкой на угол загиба до 45°, а затем конец трубы окончательно отбортовывают с помощью пуансона.

4.2.8. Для отбортовки фторопластовых труб с нагревом применяют специальную установку (рис.4.11).

Рис.4.11. Установка для отбортовки фторопластовых труб с нагревом


Рис.4.11. Установка для отбортовки фторопластовых труб с нагревом:

1, 6 - пневмоцилиндры; 2 - пуансон; 3 - горелка; 4 - хомут; 5 - основание; 7, 8 - распределители воздуха



4.2.9. Более предпочтительным является способ отбортовки труб из фторопласта без нагрева внешним источником тепла путем надвигания трубы на вращающийся конус (рис.4.12). Этот способ состоит в следующем: трубу закрепляют в устройстве, надевают на конец металлический фланец; закрепленную трубу подают на вращающийся конус и производится отбортовка конца трубы, после чего отбортовка поджимается к фланцу неподвижной оправкой, далее готовую отбортовку охлаждают и изделие извлекают из устройства.

Рис.4.12. Схема отбортовки труб из фторопласта без внешнего нагрева


Рис.4.12. Схема отбортовки труб из фторопласта без внешнего нагрева:

а - подготовка конца трубы перед отбортовкой; б - отбортовка вращающимся конусом; в - поджим отбортовки неподвижной оправкой

4.2.10. Устройство для отбортовки фторопластовых труб диаметром 32...236 мм без внешнего нагрева, основанное на способе раскатки холодных концов труб на токарных станках, приведено на рис.4.13. Оно состоит из отбортовочной головки 2, зажима для труб 3 и поддерживающей роликоопоры 4.


Рис.4.13. Устройство для отбортовки фторопластовых труб без нагрева


Рис.4.13. Устройство для отбортовки фторопластовых труб без нагрева



4.2.11. Формование раструбов. Формование выполняют для сварки враструб напорных трубопроводов из ПЭВД, ПЭНД и ПП, а также сварки нагретым газом и склеивания напорных трубопроводов из ПВХ. В технологический процесс формования раструбов на концах пластмассовых труб входят следующие операции: разогрев конца трубы, раскрепление трубы перед формованием, формование раструба на разогретом конце трубы, охлаждение отформованного раструба, освобождение готового изделия от закрепления.

4.2.12. Перед формованием раструба конец трубы нагревают до высокоэластичного состояния. Температура теплоносителя для нагрева концов труб под раструбы соответствует температуре нагрева, рекомендуемой при формовании отбортовок (см. табл.4.4).

Отформованный раструб охлаждают вместе с пуансоном. Применяется принудительное охлаждение раструба проточной водой или сжатым воздухом до температуры не выше 35 °С. В изготовленный раструб для сохранения его размеров вставляют распорное инвентарное приспособление, наружный диаметр которого равен диаметру формующего пуансона. Это приспособление из раструба вынимают только перед сваркой или склеиванием. Изготовляют распорные приспособления из отрезков металлических труб или из дерева твердых пород.

4.2.13. Формование раструбов на конце нагретых труб выполняют с помощью ручных винтовых устройств (рис.4.14), состоящих из зажима труб с вкладышами для труб различного диаметра, винтового механизма, на конце которого навинчиваются пуансоны, формующие раструб. Подача пуансона 2 внутрь нагретой трубы 1 выполняется с помощью винтового подающего механизма. В разогретый конец вводится пуансон до упора, который предохраняет от деформации участок трубы за формуемым концом.

Рис.4.14. Устройство для формования раструба на концах труб


Рис.4.14. Устройство для формования раструба на концах труб

4.2.14. Формование раструбов на конце пластмассовых труб производится также с помощью станков с различными приводами - электромеханическим, гидравлическим или пневматическим. На рис.4.15 показан универсальный станок для формования отбортовок и раструбов пластмассовых труб диаметром до 315 мм.


Рис.4.15. Универсальный станок для формования пластмассовых труб диаметром до 315 мм


Рис.4.15. Универсальный станок для формования пластмассовых труб диаметром до 315 мм:

1 - станина; 2 - планшайба; 3 - пуансон; 4 - нагреватель; 5 - упор; 6, 7 - пневмоцилиндры; 8 - зажим

4.2.15. Формование раструбов диаметром 20, 25 и 32 мм можно выполнять с помощью специального устройства (рис.4.16), в котором совмещены технологические операции по нагреву концов труб и формованию раструба.


Рис.4.16. Устройство для нагрева концов труб и формования раструбов диаметром 20, 25 и 32 мм


Рис.4.16. Устройство для нагрева концов труб и формования раструбов диаметром 20, 25 и 32 мм:

1 - сварная рама; 2 - тумблер включения электропитания нагревателя; 3 - узел зажима труб; 4 - направляющая нагревателя; 5 - нагреватель; 6 - пуансон; 7 - узел формования; 8 - кронштейн для фиксации положения нагревателя; 9 - стойка; 10 - верхний откидной полухомут; 11 - рукоятка узла зажима; 12 - полукольца для зажима труб; 13 - рукоятка узла формования; 14 - направляющие

4.2.16. Формование переходов. В технологических пластмассовых трубопроводах применяют концентрические конусные переходы, которые изготовляют из предварительно нагретых полиэтиленовых и полипропиленовых патрубков методом формования.

Изготовление переходов пластмассовых труб осуществляется путем совмещения операций обжатия трубы с формованием в строго заданной форме. На рис.4.17 показана принципиальная схема рабочего органа для изготовления переходов. Устройство состоит из пуансона 1, матрицы 2 с упорными фланцами 4 и 5, а также с рубашкой 3 для водяного охлаждения. Разогрев заготовки осуществляется аналогично разогреву при формовании утолщенных буртов. Затем заготовка вставляется в устройство и формуется переход. После полного остывания с помощью выталкивателя 7 и втулки 6 переход извлекается из матрицы.


Рис.4.17. Оснастка для формования переходов


Рис.4.17. Оснастка для формования переходов


На рис.4.18 показана схема устройства для формования переходов, состоящая из станины, на которой смонтирован рабочий пневмоцилиндр, зажимного устройства и пульта управления пневмосистемой.


Рис.4.18. Схема устройства для формования переходов из полиэтиленовых труб


Рис.4.18. Схема устройства для формования переходов из полиэтиленовых труб:

1 - выталкиватель; 2 - кронштейн; 3 - матрица; 4 - пуансоны

4.2.17. Формование горловин. Горловины в пластмассовых трубах применяют при изготовлении переходных тройников и коллекторов с переходными ответвлениями в трубопроводах из ПЭВД, ПЭНД и ПП.

Различают два способа формования горловин в трубах: с помощью пуансона без изменения толщины стенки трубы (рис.4.19а); с помощью пуансона и матрицы с принудительным изменением толщины стенки формуемой горловины (рис.4.19б).

Рис.4.19. Схема процесса вытяжки горловины в трубах


Рис.4.19. Схема процесса вытяжки горловины в трубах:

а - без принудительного формования толщины стенки; б - с принудительным формованием толщины стенки; 1 - пуансон; 2 - пластмассовая труба с отверстием; 3 - матрица

4.2.18. Калибровка концов труб. Калибровку концов труб из ПВХ выполняют при их подготовке к склеиванию. Для сварки враструб труб из ПНП, ПВП и ПП калибровку концов отдельно не производят, так как этот процесс выполняется при оплавлении конца трубы в гильзе нагревательного сварочного инструмента. Калибровку выполняют в нагретом состоянии. Нагретая в глицериновой ванне или горячим воздухом до температуры 130±5 °С труба вставляется в калибровочную гильзу. Для выполнения калибровки на конце пластмассовой трубы можно использовать устройство, применяемое для формования раструба (см. рис.13.15). Охлаждение трубы осуществляется вместе с гильзой.


4.3. Гнутье труб

4.3.1. Гнутье труб диаметром 25...160 мм применяют для изготовления соединительных деталей трубопроводов из пластмассовых труб - отводов, уток, калачей, компенсаторов и др. Гнут трубы в размягченном состоянии после нагрева. Радиус изгиба по оси трубы из ПЭ, ПП и ПВХ должен быть не менее 3,5...4, а для труб из фторопласта - не менее 10, где  - наружный диаметр трубы.

4.3.2. При гнутье пластмассовых труб необходимо выполнить следующие операции: разметку и резку труб на заготовки, измерение толщины стенки трубы; нагрев трубы; гнутье; охлаждение детали после гнутья; торцовку концов детали.

Длина трубы заготовки, мм, для гнутого отвода составляет

,


где 
 - угол изгиба трубы, град;

 - радиус гиба по оси трубы, мм;

 - длина прямого участка, необходимого для зажима трубы при гнутье и последующей сварке, мм.

4.3.3. В трубах перед гнутьем измеряют толщину стенки. На утолщенной стенке делают пометку, а при гнутье трубу устанавливают так, чтобы утолщенная стенка располагалась с наружной стороны гиба. Заготовку предварительно нагревают до заданной температуры в жидкостных (глицериновых, гликолевых) ваннах, электропечах или в газовых и паровых камерах. При гнутье отводов и концевых участков труб вертикальные глицериновые жидкостные ванны более производительны, чем электропечи. Для выполнения местных гибов на длинных трубах применяют воздушную тоннельную электропечь. В местах прохода через торцевые крышки печи трубы должны быть уплотнены по наружному диаметру, а концы труб заглушены пробками.

При нагреве в вертикальных жидкостных ваннах конец заготовки должен выступать над уровнем жидкости на 2
, чтобы оставаться холодным. Если размеры нагревательного устройства не позволяют нагреть заготовку по всей длине, ее следует гнуть в несколько приемов. При этом повторный нагрев согнутого участка не допускается.

4.3.4. Температура жидкости в ванне должна составлять, °С (±5): для труб из ПЭНД - 135; ПЭВД - 105; ПП - 165; ПВХ - 130. При нагреве труб в электропечах температура воздуха должна быть на 25...30 °С выше, чем температура жидкости при нагреве в ванне. Прогрев должен быть равномерным по толщине стенки и длине сгибаемого участка. Заготовка, нагретая до требуемой температуры, должна, не теряя устойчивости, находиться в высокоэластичном состоянии. При нагреве труб из фторопласта-4 степень нагрева определяют моментом посветления нагреваемого участка трубы, что соответствует температуре 300 °С.

4.3.5. Для предотвращения чрезмерного охлаждения нагретой заготовки время между окончанием нагрева и началом гнутья не должно превышать 40...60 с. Гибку следует выполнять плавно, без рывков и резких движений.

4.3.6. Трубы из полиэтилена, полипропилена и поливинилхлорида гнут на специальных трубогибных станках.

4.3.7. Схема обкатки нагретой трубы роликом вокруг гибочного шаблона без применения наполнителя показана на рис.4.20а. Технологию гнутья без наполнителя применяют для пластмассовых труб с отношением толщины стенки трубы к ее наружному диаметру  и радиусом изгиба 3,5 и более. Этим способом гнут трубы из ПВХ, ПЭНД типов С и Т; ПЭВД типов СЛ, С и Л; ПП типов С. При гнутье обкатывающий ролик, который должен свободно вращаться вокруг своей оси, подводят вплотную к трубе. Зазор  между гибочным шаблоном и обкатывающим роликом не должен превышать 10% наружного диаметра изгибаемой трубы.


Рис.4.20. Схема гнутья труб


Рис.4.20. Схема гнутья труб:

а - способом обкатки роликом; б - способом накатывания; 1 - гибочный шаблон; 2 - зажим; 3 - труба; 4 - ролик; 5 - рычаг; 6 - дорн; 7 - прижимная планка


Диаметр ручьев гибочного шаблона и обкатывающего ролика должен быть равен номинальному диаметру изгибаемой трубы. Ручьи должны быть тщательно обработаны, не иметь заусенцев, острых кромок и других дефектов, способных повредить поверхность трубы при гнутье.

4.3.8. Схема наматывания на гибочный шаблон разогретой трубы с внутренней оправкой - дорном показана на рис.4.20б. Этот способ применяется при отношении толщины стенки трубы к ее наружному диаметру 0,065. При гнутье наматыванием внутрь пластмассовой трубы вводят формующую текстолитовую оправку - составной или ложкообразный дорн. Опережение дорна выбирают по формуле

,

где  - радиус гнутья, мм;

 - зазор между трубой и дорном, равный 3% внутреннего диаметра трубы, мм. 

4.3.9. Чтобы избежать смятия стенок труб, применяют способ их гнутья по шаблонам с использованием наполнителей. Наполнители помещают в трубу до нагрева и гнутья. В качестве наполнителей для труб из ПЭ, ПП и ПВХ служат резиновый жгут, гибкий металлический шланг или толстостенный резиновый шланг из термостойкой резины, набитой песком или раздуваемой сжатым воздухом.


5. СВАРКА И СКЛЕИВАНИЕ ТРУБ

5.1. Подготовительные работы и особенности сварки

5.1.1. Перед выполнением сварочных работ необходимо проверить соответствие труб, соединительных деталей и присадочных материалов требованиям нормативной документации на их производство и наличие документа, удостоверяющего их качество; очистить и обезжирить поверхности сварки; произвести механическую обработку концов труб и деталей, их взаимную подгонку и калибровку; убедиться в исправности сварочной оснастки; проверить квалификацию лиц, выполняющих сварочные работы.

5.1.2. Свариваемые трубы и соединительные детали должны быть изготовлены из одинакового материала и подобраны по партиям поставки (т.е. они должны принадлежать к одной партии). Особое внимание необходимо обращать на размер наружного диаметра и эллипсность трубы. Разностенность или смещение торцов труб в плоскости сварки допускается не более 10% толщины стенки, но не должны превышать 1,2 мм. При значительном смещении кромок в результате деформации концы одной или обеих труб калибруют. Непосредственно перед сваркой очищенные трубы необходимо торцевать. При выполнении раструбных сварных соединений на конце трубы с наружной стороны и на торце раструба с внутренней стороны должна быть фаска под углом 45° на  толщины стенки трубы (детали).

5.1.3. Применяемая для сварки оснастка должна обеспечивать поддержание требуемых параметров технологических режимов сварки. Для предотвращения налипания при сварке расплавленного материала нагреватель покрывают чехлом из теплостойкого антиадгезионного покрытия, например, из лакоткани на основе фторопласта -4D. Рабочие поверхности нагревательного инструмента должны быть чистыми.

5.1.4. Пластмассовые трубы следует готовить к сварке не ранее чем за 3 часа. При сварке нагретым инструментом встык зазор между торцами труб, установленными в сварочном устройстве и приведенными в соприкосновение, не должны превышать 0,3 мм для труб 110 мм; 0,4 мм - для труб  до 225 мм; 0,5 мм - для труб  до 315 мм и 0,6 мм - для труб 315 мм. Это необходимо для того, чтобы свариваемые торцы труб можно было одновременно по всей плоскости торца прижать к нагревательному инструменту, а после оплавления - друг к другу. Вызвано это тем, что вязкость расплавленного полимера очень высока, а при больших неровностях и зазорах поверхности торцов будут оплавляться не полностью, что приведет к созданию в сварном стыке непроваров.

5.1.5. При сварке труб встык нагретым газом с применением присадочного материала величина зазора в корне шва принимается равной 0,5...1,5 мм, в раструбном соединении диаметральный зазор не должен превышать 0,5 мм. Для сварки встык производится V-образная разделка кромок торцов труб без притупления. Для труб с толщиной стенки до 6 мм угол раскрытия составляет 55...60°, а для труб с толщиной стенки более 6 мм - 70...90°. Трубы с толщиной стенки до 4 мм можно сваривать без подготовки кромок. В этом случае между торцами труб следует оставлять зазор 1...3 мм для обеспечения равномерного провара. Диаметр сварочного прутка выбирают в зависимости от толщины стенки свариваемой трубы: при толщине стенки до 6 мм используют пруток диаметром до 3 мм, в других случаях - 4 мм.

5.1.6. Перед сваркой пластмассовых труб новой партии необходимо производить контрольную сварку для проверки и корректировки режимов.

5.1.7. Трубопроводы из ПВХ и ПП следует сваривать при температуре окружающего воздуха не ниже 5 °С. При более низких температурах сварку необходимо осуществлять в утепленных укрытиях. В случае выхода конца трубы за пределы укрытия на нем целесообразно установить съемные заглушки. Место проведения сварочных работ должно быть защищено от сквозняков, пыли, ветра и атмосферных осадков. Сварные соединения следует охлаждать только естественным путем и подвергать механическим нагрузкам только через 24 ч после сварки.


5.2. Сварка нагретым инструментом встык

5.2.1. Последовательность операций при сварке пластмассовых труб нагретым инструментом встык показана на рис.5.1. По сравнению со сваркой враструб для соединения труб различных типоразмеров при сварке встык может быть использован один и тот же сварочный инструмент.


Рис.5.1. Схема сварки труб нагретым инструментом встык


Рис.5.1. Схема сварки труб нагретым инструментом встык:

I - исходное положение труб (деталей) и нагревательного инструмента; II - оплавление свариваемых поверхностей; III - готовое сварное соединение; 1 - свариваемые трубы; 2 - электронагревательный инструмент



5.2.2. Технологический процесс сварки труб нагретым инструментом встык состоит из следующих операций: очистка и обезжиривание труб; установка и центровка труб в зажимах сварочного устройства; торцовка труб; ввод нагревательного инструмента и оплавление торцов (при оплавлении рабочая зона нагревательного инструмента должна выступать за контуры свариваемых торцов труб); вывод нагревательного инструмента и соединение труб под давлением сварки (осадка); охлаждение сварного соединения под осевой нагрузкой.

5.2.3. Достаточную степень оплавления труб в каждом отдельном случае ориентировочно можно определить визуально по образованию на кромках торцов труб по всему периметру валика оплавленного материала. Высота валиков после сварки должна быть не более 2...2,5 мм при толщине стенки трубы до 5 мм и не более 3...5 мм при ее толщине 6...20 мм.

Дальнейший прогрев деталей вызван необходимостью перевода прилегающих к нагревателю слоев материала в вязкотекучее состояние. При сокращении продолжительности прогрева при постоянной температуре инструмента ухудшается качество шва вследствие недостаточного размягчения материала. Давление при прогреве должно быть значительно ниже, чем при оплавлении.

Продолжительность технологической паузы (время между окончанием прогрева и соединением изделий) должна быть по возможности минимальной, чтобы свариваемые поверхности не успели охладиться, и в зависимости от конструкции сварочного оборудования составлять не более 2...3 с. Увеличение этой паузы сверх указанных значений снижает прочность сварного шва.

5.2.4. Для обеспечения высокого качества сварных соединений необходимо применять электронагревательный инструмент с устройствами для автоматического регулирования температуры рабочих поверхностей (рис.5.2).


Рис.5.2. Электронагревательный инструмент для сварки труб D(н) больше или равно 110 мм


Рис.5.2. Электронагревательный инструмент для сварки труб 
110 мм:

1 - нагревательная плита; 2 - терморегулятор; 3 - корпус; 4 - ручка

5.2.5. Обычно применяют инструменты с плоскими рабочими поверхностями. Применение профилированного инструмента позволяет значительно увеличить поверхность сварки по сравнению с плоскими электронагревательными инструментами, что повышает прочность соединения примерно на 30% без изменения поперечного сечения трубы, а также без дополнительных расходов материала и труда при сварке.

5.2.6. Для сварки пластмассовых труб в монтажных условиях разработано сварочное устройство УСПМ-110 (рис.5.3.), которое предназначено для сварки труб наружным диаметром 50...110 мм. Устройство имеет ручной рычажный привод, обеспечивающий наибольшую силу на рычагах, равную 80 Н. Габариты устройства: 520x640x150 мм, масса 6,5 кг.


Рис.5.3. Устройство сварочное монтажное УСПМ-110


Рис.5.3. Устройство сварочное монтажное УСПМ-110:

1 - штанга; 2 - тяга; 3 - хомут зажимный; 4 - кронштейн; 5 - рычаг; 6 - зубчатый сектор



Для сварки нагретым инструментом встык пластмассовых труб в условиях строительной площадки применяют специальные установки. Например, для сварки труб наружным диаметром 90...225 мм при строительстве магистральных пластмассовых трубопроводов используют установку УМСТ-09 (рис.5.4).


Рис.5.4. Установка УМСТ-09 для сварки пластмассовых труб в полевых условиях


Рис.5.4. Установка УМСТ-09 для сварки пластмассовых труб в полевых условиях


5.3. Сварка нагретым инструментом враструб

5.3.1. Последовательность операций при сварке нагретым инструментом враструб показана на рис.5.5. В отличие от сварки встык в данном случае для каждого типоразмера труб требуется свой нагревательный инструмент (рис.5.6).


Рис.5.5. Схема сварки труб нагретым инструментом враструб


Рис.5.5. Схема сварки труб нагретым инструментом враструб:

I - исходное положение труб (деталей) и нагревательного инструмента; II - оплавление свариваемых поверхностей; III - готовое сварное соединение; 1 - свариваемые трубы; 2 - электронагревательный инструмент

Рис.5.6. Электронагревательный инструмент для сварки враструб


Рис.5.6. Электронагревательный инструмент для сварки враструб:

1 - нагревательный элемент; 2 - дорн; 3 - гильза



5.3.2. Технологический процесс сварки состоит из следующих операций: очистка и обезжиривание труб; установка и центровка труб в зажимах сварочного устройства; ввод нагревательного инструмента и оплавление свариваемых поверхностей труб; вывод нагревательного инструмента и стыковка соединяемых труб; охлаждение сварного соединения.


5.4. Сварка нагретым газом с применением присадочного материала

5.4.1. Сварку нагретым газом с применением присадочного материала выполняют с помощью сварочных горелок различной конструкции. Этот способ унверсален, отличается простотой сварочного инструмента, пригоден для сварки изделий при различном их положении в пространстве, меньшие по сравнению с другими способами требования к точности подгона деталей друг к другу, не происходит налипание расплава термопласта на инструмент и т.д. Поэтому, несмотря на сравнительно низкую производительность и недостаточно высокую прочность соединений, особенно при ударных и изгибающих нагрузках, этот способ широко применяют для соединения элементов безнапорных трубопроводов из жестких термопластов.

5.4.2. Соединения труб выполняют встык и враструб (рис.5.7). Прочность стыкового соединения выше, чем раструбного, т.к. последнее имеет меньшую площадь сечения углового шва, более неравномерное распределение напряжений. Для подогрева и подачи струи горячего газа применяют электрические нагревательные устройства и газовые горелки.

Рис.5.7. Типы сварных соединений пластмассовых труб при сварке нагретым газом с применением присадочного материала и порядок укладки сварочных прутков в шов


Рис.5.7. Типы сварных соединений пластмассовых труб при сварке нагретым газом с применением присадочного материала и порядок укладки сварочных прутков в шов:

а - при стыковом соединении; б - при соединении враструб



5.4.3. Для сварки пластмасс нагретым газом с применением присадочного материала отечественная промышленность выпускает электрическую горелку ГЭП-2 (рис.5.8). Работа горелки основана на нагреве газового теплоносителя теплом электрической спирали. Горелка состоит из сопла 1, ствола 2, фарфоровой трубки 3, электрической спирали 4, изолятора 5, вентиля 6, рукоятки 7, токоподводящего провода 8, ниппеля 9 для присоединения газового шланга, в качестве которого рекомендуется применять резинотканевые рукава с внутренним диаметром 6 мм.


Рис.5.8. Горелка ГЭП-2 для сварки пластмасс


Рис.5.8. Горелка ГЭП-2 для сварки пластмасс

5.4.4. Производительность и качество сварки можно повысить за счет применения специальных наконечников. В горелке с наконечником (рис.5.9) канал для прохода присадочного материала размещен во внутренней полости сварочного сопла наконечника. Теплоноситель, поступающий по соплу, подогревает одновременно основной материал, место сварки и присадочный пруток. Давление на пруток создается рукой, прижимающей и перемещающей горелку с наконечником вдоль шва. Пруток вводят в канал сопла после прогрева свариваемых кромок.

Рис.5.9. Электрическая сварочная горелка со специальным наконечником


Рис.5.9. Электрическая сварочная горелка со специальным наконечником



5.4.5. В зарубежной практике монтажных работ для сварки пластмасс применяют электрические горелки, не требующие для своей работы компрессорной установки или баллона со сжатым газом. Такие горелки снабжены малогабаритным компрессором для забора и подачи воздуха в зону сварки (рис.5.10).


Рис.5.10. Электрическая горелка с компрессором


Рис.5.10. Электрическая горелка с компрессором:

1 - кабель питания; 2 - ручка с электродвигателем; 3 - малогабаритное устройство для забора и подачи воздуха в камеру нагрева; 4 - камера нагрева с электронагревательным элементом; 5 - сопло

5.5. Прочие способы сварки


В отечественной и зарубежной практике строительства пластмассовых трубопроводов кроме рассмотренных выше в небольших объемах применяют и такие способы сварки, как сварка электросопротивлением, экструдируемой присадкой, трением, нагревом прутка в контактном нагревателе, инфракрасным излучением, растворителями.


5.6. Контроль качества сварных соединений

5.6.1. Дефекты сварных соединений пластмассовых трубопроводов подразделяются на наружные, выявляемые поверхностным осмотром, и внутренние (в сварном шве), обнаруживаемые только специальными методами контроля. Основными дефектами в сварных швах являются: несоответствие шва требуемым геометрическим размерам, подрезы, трещинообразование, поры, непровары, усадочные раковины и участки материала, подверженные термоокислительной деструкции.

5.6.2. Несоответствие шва требуемым геометрическим размерам является в основном результатом нарушения сварщиком технических условий на размеры сварного шва, который должен быть в пределах допусков на его усиление. При уменьшении размеров шва снижается прочность соединения; при большом увеличении этих размеров швы нерациональны с экономической точки зрения и с точки зрения концентрации напряжений.

5.6.3. Подрезы представляют собой узкие, продольные углубления, образующиеся по краям шва в основном материале, максимальная глубина которых обычно допускается 1...2 мм. Если их глубина составляет не более 10% от толщины свариваемых элементов в неответственных конструкциях, то подрезы не подваривают. Подрезы уменьшают сечение основного материала в зоне термического влияния и служат местом концентрации напряжений и началом образования трещин. Швы с подрезами нестойки к динамическим нагрузкам.

5.6.4. Трещинообразование - наиболее опасный вид наружных и внутренних дефектов шва. Трещины в швах трудно обнаружить, так как они могут быть волосяными и находиться внутри шва. При эксплуатации изделия эти трещины увеличиваются, в результате чего соединение может разрушитъся. Трещины в швах бывают продольными и поперечными. Швы, в которых возможно образование трещин, следует тщательно осматривать, а обнаруженные трещины удалять и тщательно заваривать. Предупредить трещины можно строгим соблюдением технологических режимов сварки и термической обработки сварных швов.

5.6.5. Поры образуются при сварке нагретым инструментом от длительного присутствия на воздухе оплавленных поверхностей перед их соединением и недостаточного давления осадки, неспособного выдавить поры на поверхность стыка. Наибольшую опасность для сварного стыка создают поры, расположенные в рабочем сечении шва. В зависимости от температуры окружающей среды в местах концентрации пор может наблюдаться разрушение образцов по зоне сплавления с образованием шейки. Причиной образования пор при сварке нагретым газом с применением присадочного прутка является несоответствие присадочного материала основному, высокая температура теплоносителя, приводящая к пережогу присадочного или основного материала, наличие пор в присадочном прутке и др.

5.6.6. Непровары - наиболее распространенные и опасные дефекты сварных швов, ослабляющие прочность сварного соединения. Опасность непроваров заключается в том, что по наружному виду шва нельзя установить этот дефект, так как он может находиться в любом месте шва. Причина непровара - некачественная сборка и неправильная разделка торцов труб, нарушение технологического режима сварки (малое давление и недостаточная длительность осадки), неудовлетворительная очистка присадочного материала и свариваемых поверхностей от грязи, масла, окисленной пленки и др. Непроваренные участки целиком вырезают и заваривают.

5.6.7. Усадочные раковины (или усадочные напряжения) возникают вследствие недостаточного давления, малой выдержки осадки и неравномерного охлаждения шва при его остывании. Наибольшую опасность для работоспособности сварного соединения имеют раковины в зоне сплавления.

5.6.8. Наличие в зоне сплавления стыка участка материала, подверженного термоокислительной деструкции, который образуется вследствие завышенной температуры сварки, также является опасным дефектом сварного соединения. Данный участок материала в сварном соединении не способен к рабочим наргузкам, что приводит к концентрации напряжений и последующему разрушению стыка по зоне сплавления.

5.6.9. Требуемое качество соединений необходимо обеспечивать комплексом мероприятий, проводимых на различных стадиях их изготовления: до начала процесса (предупредительный контроль), во время изготовления соединения (активный контроль) и после изготовления соединения (приемочный контроль).

5.6.10. Предупредительный контроль предусматривает: контроль соответствия свариваемых изделий техническим требованиям; контроль качества подготовки свариваемых поверхностей; контроль технического состояния применяемых инструментов и оборудования; контроль квалификации рабочего персонала; контроль технологической подготовленности производства.

5.6.11. Активный контроль предусматривает контроль правильности технологических параметров, влияющих на качество соединения. Он включает контроль: длительности технологических этапов секундомерами и реле времени; температуры нагревательных инструментов - электрическими и другими приборами; осевого усилия при оплавлении, осадке и охлаждении - прямыми или косвенными измерениями с помощью динамометров, манометров и других приборов.

5.6.12. Приемочный контроль предусматривает проведение неразрушающих и разрушающих испытаний, на основе которых производится отбраковка соединений. В условиях стройки наиболее целесообразно применение неразрушающих методов - визуального контроля (внешнего осмотра и измерения линейных размеров сварочного грата) и контроля герметичности. Эффективность визуального контроля основана на том, что геометрические характеристики и внешний вид соединения связаны с технологическими параметрами процесса изготовления соединения. Например, форма, размеры и внешний вид наплывов при сварке нагретым инструментом встык зависят от времени и температуры оплавления, а также давления осадки. Поэтому наличие разности высот валиков свидетельствует о различной глубине проплавления двух сваренных изделий, наличие неоднородного валика по периметру шва указывает на недостаточную центровку, пористая форма валика свидетельствует о перегреве. Внешнему осмотру подлежат все сварные стыки для выявления: перекосов в соединении; перегрева материала стенок свариваемых деталей; зон непровара (пустот) между сваренными деталями; недостаточного или увеличенного валика, а также несимметричности и неравномерности его по периметру (для соединений, полученных сваркой встык).

5.6.13. Внешний осмотр производится при надлежащем освещении, при этом используется увеличительное стекло с пятикратным увеличением.

5.6.14. Герметичность соединений проверяют путем проведения гидравлических и пневматических испытаний.


5.7. Склеивание трубопроводов из поливинилхлорида

5.7.1. Склеивание - наиболее широко применяемый способ соединения трубопроводов из поливинилхлорида. В большинстве случаев склеивание производится в раструб, отформованный на одном из соединяемых концов труб, при этом раструб следует располагать навстречу движению транспортируемой среды.

При производстве работ по склеиванию выполняются следующие технологические операции: разметка и резка труб; нагрев конца трубы и формование раструба; калибровка конца трубы; снятие фасок на торцах трубы и раструба (на трубе - снаружи, на раструбе - внутри); зачистка и обезжиривание склеиваемых поверхностей; придание шероховатости склеиваемым поверхностям (это способствует повышению прочности клеевого соединения), нанесение клея на склеиваемые поверхности, сборка клеевого соединения, затвердевание клеевой прослойки.

Шерохование склеиваемых поверхностей (с предварительной их очисткой) производится при склеивании без зазора. Для шерохования применяется шлифовальная шкурка с крупностью абразивного зерна N 10...16. При склеивании с зазором производится только обезжиривание.

5.7.2. Для получения качественного соединения при склеивании без зазора особое внимание следует уделять подгонке наружного диаметра трубы к внутреннему диаметру раструба - труба должна входить в раструб с натягом. Это достигается путем калибровки конца трубы, при этом на подготовленных к склеиванию трубах снимают фаски: на конце трубы снаружи, на раструбе - изнутри под углом 45° на  толщины трубы.

5.7.3. Клей перед употреблением необходимо тщательно перемешать. Перед нанесением клея производят контрольную сборку соединения, при которой определяют зазор в соединении и в зависимости от него количество слоев наносимого клея (если зазор в соединении более 0,2 мм, наносят два слоя клея), а также устанавливают меткой длину вставляемого в раструб участка трубы. При склеивании без зазора клей наносят кистью равномерным тонким слоем на конец трубы и на две трети глубины раструба, чтобы избыток клея не выдавливался внутрь трубы, откуда его невозможно удалить.

5.7.4. Зазорозаполняющие клеи следует наносить кистью или шпателем тонким слоем на раструб и толстым слоем на конец трубы. Нанесение клея марки ГИПК-127 производится следующим образом. После первого слоя клея дается открытая выдержка 90 с, после второго слоя также открытая выдержка 60 с, затем трубы соединяют. Время между началом нанесения клея и сборкой соединения должно составлять не более 2 минут при температуре выше 25 °С и не более 3 минут при температуре до 25 °С.

Клей следует наносить только в осевом направлении мягкой кистью. Нанесение клея на соединяемые поверхности труб для 63 мм рекомендуется выполнять двум рабочим одновременно. Один должен наносить клей на трубу, другой - на раструб. После нанесения клея трубу вставляют в раструб, не допуская при этом их относительного вращения, чтобы в слое клея не образовывались воздушные пузырьки. Избыток клея, вытесненный из зазора между склеиваемыми поверхностями, а также капли, попавшие на поверхность труб, удаляют тампоном. В качественном клеевом соединении зазор между склеиваемыми поверхностями по всему периметру соединения равномерно заполняется клеевой пленкой.

5.7.5. Возможен также следующий способ склеивания. Конец трубы с внутренней фаской нагревают до 120...130 °С до размягчения и свободно, как резиновый шланг, насаживают на холодную трубу с наружной фаской на глубину 0,8...1 ее диаметра. Отформованный раструб вместе со вставленной в него трубой быстро охлаждают холодной водой. После охлаждения и удаления влаги положение труб фиксируют меткой, наносимой на стыкуемые элементы. Затем трубы разнимают, соединяемые поверхности обезжиривают и зачищают наждачной бумагой. На конец гладкой трубы кистью наносят слой клея и вновь вставляют в раструб, совмещая метки.

Расход клея при склеивании составляет 100...200 г/м
, а обезжиривателя - 100...150 г/м.

5.7.6. Склеенные стыки в течение 5 мин не должны подвергаться механическим воздействиям. Склеенные узлы и плети перед монтажом должны выдерживаться не менее двух часов. Гидравлические испытания трубопровода следует осуществлять не ранее 24 часов после склеивания.

5.7.7. Работы по склеиванию производят в температурном интервале 5...35 °С. Место выполнения работы защищают от ветра и атмосферных осадков. Трубы наружным диаметром до 90 мм можно соединять вручную, а трубы большего диаметра - с использованием специальных центрирующих приспособлений, применяемых для сборки разъемных раструбных соединений на резиновых уплотнительных кольцах.

Для производства работ по склеиванию труб из ПВХ наружным диаметром 20...32 мм с применением клея ГИПК-127 может использоваться специальный комплект инструментов (рис.5.11), обеспечивающий выполнение следующих технологических операций: разметка отрезков труб; резка труб перпендикулярно их оси; зачистка, обезжиривание и шерохование склеиваемых поверхностей; снятие фасок на торцах склеиваемых труб; нанесение клея на склеиваемые поверхности.


Рис.5.11. Комплект инструмента для склеивания труб из ПВХ D(н) = 20...32 мм


Рис.5.11. Комплект инструмента для склеивания труб из ПВХ 20...32 мм:

1 - напильник; 2 - полотна ножовочные; 3 - отвертка; 4 - вкладыши для труб 20 мм; 5 - емкость для обезжиривателя; 6 - приспособление для зажима труб при резке (см. рис.4.5); 7 - шкурка шлифовальная; 8 - ножовка ручная; 9 - флейц-кисти; 10 - струбцина; 11 - емкость для клея; 12 - вкладыши для труб 25 мм; 13 - ветошь обтирочная; 14 - лопатка для перемешивания клея; 15 - рулетка; 16 - линейка


6. ИЗГОТОВЛЕНИЕ СВАРНЫХ СОЕДИНИТЕЛЬНЫХ ДЕТАЛЕЙ ТРУБОПРОВОДОВ

6.1. Технология изготовления деталей и контроль их качества

6.1.1. С применением сварки изготовляются соединительные детали трубопроводов из ПЭНД, ПЭВД и ПП.

Изготовление сварных соединительных деталей пластмассовых трубопроводов осуществляется с помощью сварки нагретым инструментом встык и сварки экструдируемой присадкой. Технологические режимы приведены в разделе 5, а схема изготовления деталей дана на рис.6.1.


Рис.6.1. Схема изготовления сварных соединительных деталей пластмассовых трубопроводов


Рис.6.1. Схема изготовления сварных соединительных деталей пластмассовых трубопроводов:

а - односекторных отводов; б - равнопроходных прямых тройников; в - равнопроходных косых тройников; г - неравнопроходных тройников; д - крестовин


Примечание: При отрезке вершин сварного угольника (схемы б, в, д) необходимо предусматривать припуск на осадку при оплавлении и при сварке, для чего линию реза необходимо смещать от точки пересечения осей на 2...3 мм в сторону вершины угольника.


6.1.2. У готовых соединительных деталей контролируются внешний вид, основные геометрические параметры и стойкость к внутреннему гидростатическому давлению при температуре 20 °С. Контроль качества деталей производится партиями не ранее чем через 16 часов после их изготовления.

6.1.3. Контролю на внешний вид подлежат все детали партии, при этом проверяют соответствие сварных швов требованиям, изложенным в разделе 5, а также состояние поверхности деталей вне зоны сварных швов. Контроль поверхности соединительных деталей проводят визуально.

6.1.4. Контролю основных размеров подвергаются 20%, но не менее 10 штук деталей от партии из числа прошедших контроль на внешний вид. В случае если размер партии менее 10 штук, контроль размеров производится на всех изделиях.

6.1.5. Контроль размеров деталей производят с помощью шаблонов, угольников, калибров, рулетки, линеек и другого контрольно-измерительного инструмента.

6.1.6. Испытанию внутренним гидростатическим давлением подвергают 2% деталей, но не менее трех по количеству от партии из числа прошедших контроль на внешний вид и контроль размеров. Значение гидростатического давления при температуре испытаний

,


где  - испытательное давление при 20 °С (табл.6.1);

 - коэффициент корреляции, зависящий от температуры рабочей жидкости в трубопроводе ():

Табл.6.1


Значения внутреннего гидростатического давления при температуре испытаний 20 °С

     

Материал детали

Тип трубы

Испытательное давление, МПа

Полиэтилен низкого давления, полипропилен

Т

3,0

 

С

1,8

 

СЛ

1,2

 

Л

0,75

Полиэтилен высокого давления

Т

2,7

 

С

1,6



Соединительные детали должны выдерживать испытательное давление без признаков разрушения в течение не менее 1 часа. Нагружение испытываемой детали гидростатическим давлением до расчетной величины должно осуществляться за 20...60 секунд после заполнения образца рабочей жидкостью. В течение испытания давление в образце должно поддерживаться с точностью ±2% от испытательного. Испытание проводят на специальных стендах. Испытываемый образец герметически закрывают заглушками, конструкция которых должна обеспечивать возможность подачи в образец гидравлической жидкости и полное удаление воздуха из испытываемого образца при заполнении его водой. Конструкция стенда должна обеспечивать возможность свободной деформации образцов при испытании.

При получении неудовлетворительных результатов контрольной проверки деталей хотя бы по одному показателю (внешний вид, основные размеры, стойкость к внутреннему гидростатическому давлению) этот показатель контролируется повторно на удвоенном количестве образцов, взятых из той же партии. Результаты повторной проверки являются окончательными и распространяются на всю партию.


6.2. Оборудование для изготовления деталей

6.2.1. Изготовление сварных соединительных деталей должно производиться в условиях трубозаготовительных цехов и мастерских на специальном оборудовании, обеспечивающем правильное взаимное расположение свариваемых заготовок и соблюдение требуемых параметров сварки.

6.2.2. Для изготовления сварных соединительных деталей созданы различные устройства, отличающиеся конструктивным исполнением, но имеющие идентичные схемы работы. На рис.6.2 приведено устройство для сварки соединительных деталей из труб 63...110 мм.

Рис.6.2. Устройство для сварки соединительных деталей пластмассовых трубопроводов D(н) = 63...110 мм


Рис.6.2. Устройство для сварки соединительных деталей пластмассовых трубопроводов 63...110 мм



Устройство состоит из механизма для центровки и сварки заготовок труб, электронагревательного инструмента 6, инструмента для торцовки 5 и станины 4. Механизм для центровки и сварки труб состоит из двух подвижных во взаимно перпендикулярном направлении кареток. Перемещение каретки 2 производится с помощью винтовой пары и пары шестерен, перемещение каретки 1 - винтовой парой. Для закрепления труб различных диаметров каждая каретка имеет зажимные хомуты со сменными вкладышами 3.

6.2.3. С помощью устройства, показанного на рис.6.2, производится изготовление сварных неравнопроходных тройников путем приварки патрубка ответвления к горловине, отформованной на основной трубе. Устройство состоит из подвижной 4 и неподвижной 1 кареток, ручного рычажного привода 5 подвижной каретки, пружинного устройства 6 для регулирования усилия осадки при сварке и сварного корпуса 7. В комплект устройства входят сменные вкладыши для зажима патрубка 3 и основной трубы 2, а также плоский электронагревательный инструмент. Патрубок зажимается в подвижной, а основная труба в неподвижной каретке.


Рис.6.3. Устройство для сварки неравнопроходных тройников


Рис.6.3. Устройство для сварки неравнопроходных тройников


7. ВЫПОЛНЕНИЕ РАЗЪЕМНЫХ СОЕДИНЕНИЙ ПЛАСТМАССОВЫХ ТРУБ

7.1. Фланцевые соединения

7.1.1. При сборке фланцевых соединений затягивать болты нужно равномерно поочередным завинчиванием противоположно расположенных гаек и соблюдением параллельности фланцев. Не рекомендуется устранять перекос фланцев путем неравномерного натяжения болтов или применением клиновых прокладок (шайб). Гайки болтов должны быть расположены на одной стороне фланцевого соединения, а для затяжки рекомендуется применять тарированные гаечные ключи. Прокладки должны иметь размеры, соответствующие уплотнительным поверхностям буртовых втулок. Материал прокладок указывается проектом.

7.1.2. Резиновые прокладки эластичны, что позволяет обеспечивать герметичность соединений при небольших удельных давлениях на прокладке. Поэтому, учитывая, что чрезмерное сжатие ухудшает эксплуатационные свойства резины, при сборке фланцевого соединения следят за тем, чтобы деформация резиновой прокладки не превышала 20...40% ее толщины.

При затяжке фланцевых соединений трубопроводов из фторопласта, собираемых на фторопластовых прокладках, нельзя допускать остаточные деформации в прокладках. Необходимо следить, чтобы уменьшение толщины прокладки не превышало 10...15% ее номинального размера. Во избежание перенапряжения применяют комбинированные прокладки, состоящие из листовой резины и чехольчика из тонкого фторопласта (рис.7.1).


Рис.7.1. Резиновая прокладка в чехольчике из фторопласта


Рис.7.1. Резиновая прокладка в чехольчике из фторопласта:

1 - оболочка из фторопласта; 2 - резиновая прокладка

7.1.3. Для трубопроводов из полиолефинов наружным диаметром более 225 мм разработан следующий способ изготовления фланцевого соединения с помощью сегментов, привариваемых на торцах труб. От трубы, на которой необходимо получить упорный бурт, отрезают кольцо шириной 30 мм, разрезают его на сегменты длиной 80 мм. Последние приваривают к трубе на расстоянии 2...3 мм от торца (рис.7.2), чем обеспечивается необходимый зазор для создания уплотнения в стыке. Количество привариваемых сегментов зависит от диаметра полиэтиленовой трубы (для труб 225 мм - 6 шт., 315 мм - 8 шт., 400 мм - 10 шт., 680 мм - 16 шт.).


Рис.7.2. Труба с приваренными сегментами для изготовления фланцевых соединений трубопроводов диаметром D(н)>225 мм


Рис.7.2. Труба с приваренными сегментами для изготовления фланцевых соединений трубопроводов диаметром 225 мм


7.2. Соединение с накидными гайками

7.2.1. Выполнение соединений с накидными гайками осуществляют следующим образом. Концы соединяемых труб обрезают под прямым углом, на один конец надвигают накидную гайку и упорное кольцо, а на другой - резьбовую втулку. Затем соединяемые концы труб нагревают и формуют на них прямой бурт или конусный раструб (в зависимости от типа выполняемого соединения), а после этого производят сборку соединения, используя для сборки стандартные гаечные ключи. Через некоторое время соединение дополнительно подтягивают.

7.2.2. Формование конусного раструба на тонкостенных трубах нельзя производить в холодном состоянии, так как в этом случае в трубах возникают внутренние напряжения. Конец трубы может быть нагрет и расширен непосредственно на конусном кольце и обжат в размягченном состоянии.

7.2.3. При сборке соединений на отбортованных трубах необходимо следить, чтобы резьбовая втулка и упорное кольцо со стороны буртов имели скругления (для предотвращения надрезов буртов при сборке соединения).


7.3. Раструбные соединения на резиновых кольцах


Раструбные соединения труб из ПВХ повышенной прочности, имеющие раструбы с желобками, осуществляются с помощью резиновых уплотнительных колец следующим образом. Внутренняя поверхность раструба в зоне желобка под резиновое уплотнительное кольцо очищается с помощью ветоши от грязи, воды и пыли для обеспечения плотности соединения, исключения выдавливания кольца из желобка при сборке соединения. В желобок раструба вкладывается резиновое уплотнительное кольцо широкой стороной к внутренней части трубы (рис.7.3), при этом для облегчения установки его предварительно складывают в форме "сердца" или "восьмерки". Перед укладкой кольца с него удаляют выпрессовку - участки резины, выдавленной между отдельными частями пресс-форм при изготовлении кольца.


Рис.7.3. Укладка резинового уплотнительного кольца в канавке раструба трубы


Рис.7.3. Укладка резинового уплотнительного кольца в канавке раструба трубы


Для лучшего вдвигания трубы в раструб при сборке соединения гладкий конец трубы с фаской и внутреннюю поверхность резинового кольца смазывают глицерином. Вместо глицерина в качестве смазки можно использовать вазелин, жидкое мыло или густой мыльный раствор (употребление масла и солидола не допускается из-за низкой маслостойкости резиновых уплотнительных колец).

На трубе, вставляемой в раструб, карандашом отмечается глубина раструба, а на торце с помощью драчевого напильника или другого инструмента снимают наружную фаску (рис.7.4). Размеры фаски в зависимости от наружного диаметра труб 
 следующие:

             

, мм

110

140

160

225

280

315

Размер фаски, мм

8,0

10,0

11,5

16,0

20,0

20,0

Рис.7.4. Схема снятия фаски на конце трубы


Рис.7.4. Схема снятия фаски на конце трубы


Гладкий конец трубы вводят в раструб либо раструб надвигают на трубу на всю его глубину (до тех пор, пока метка на трубе не совпадет с торцом раструба), затем трубу извлекают из раструба на 1 см. Это необходимо для компенсации температурных удлинений трубопровода. Для сборки соединений применяют различные стяжные приспособления (рис.7.5 и 7.6).


Рис.7.5. Сборка раструбного соединения на резиновом кольце с помощью рычажного приспособления


Рис.7.5. Сборка раструбного соединения на резиновом кольце с помощью рычажного приспособления:

1 - труба с гладким концом; 2 - хомут; 3 - ограничительная метка; 4 - тяга; 5 - рычаг; 6 - труба с раструбом


Рис.7.6*. Сборка раструбного соединения на резиновом кольце с помощью рычага:

1 - рычаг; 2 - прокладка из твердого дерева; 3 - труба с гладким концом; 4 - труба с раструбом

________________
* Рисунок 7.6. отсутствует в оригинале. - Примечание изготовителя базы данных.



7.4. Прочие виды разъемных соединений

7.4.1. В резьбовых соединениях изготовление резьбы производится как на самих трубах, так и на присоединяемых к трубам (сваркой или склеиванием) специальных резьбовых втулках. Изготовление резьбы на толстостенных трубах целесообразно производить методом выдавливания, так как при этом сохраняется ориентация материала вдоль оси трубы, в то время как при нарезании резьбы волокна материала разрушаются. Однако даже при выдавливании резьбы ослабление сечения настолько велико, что в случае применения резьбового соединения допускаемое рабочее давление должно быть снижено. Резьбовые соединения тонкостенных труб целесообразно осуществлять наклеиванием на конец трубы втулки с наружной резьбой. Применяют также изготовленные литьем под давлением футорки, имеющие с одной стороны резьбу, а с другой - раструб, предназначенный для сварки или склеивания. Уплотнение соединений осуществляется с помощью пеньки или льна, обмазанных суриком. Сборку резьбовых соединений следует производить осторожно без перекосов. Нарезка внутренней резьбы на пластмассовых трубах не допускается, так как под воздействием внутреннего давления труба несколько расширяется, и соединение может дать течь.

7.4.2. Изготовление ниппельных соединений производится следующим образом. Конец пластмассовой трубы разогревают, затем надвигают на ниппель таким образом, чтобы труба полностью огибала кольцевые ребристые выступы ниппеля. После охлаждения на трубу устанавливают обжимной хомут. Надвигать трубу на ниппель без подогрева не рекомендуется, так как возможно образование на трубе внутренних трещин. Для безнапорных систем ниппельное соединение может быть получено без установки обжимного хомута. Плотность такого соединения обеспечивается за счет усадки расширенного участка пластмассовой трубы при охлаждении.



8. МОНТАЖ ТРУБОПРОВОДОВ

8.1. Техническая документация на трубопроводы

8.1.1. Техническая документация, по которой изготавливают и монтируют трубопроводы, должна быть разработана с соблюдением строительных норм и правил (СНиП), других нормативных документов, а также с учетом специфики проектирования пластмассовых трубопроводов.

8.1.2. Объем и содержание технической документации должны соответствовать требованиям СН СНиП 11.01-2003 "Инструкции о порядке разработки, согласования, утверждения и составе проектной документации на строительство предприятий, зданий и сооружений", а также требованиям соответствующих стандартов.

8.1.3. Техническая документация (рабочие чертежи) на строительство пластмассовых трубопроводов делятся на два вида: монтажные чертежи, разрабатываемые отраслевыми проектными организациями, и деталировочные чертежи (КТД), разработку которых в большинстве случаев осуществляют проектные подразделения монтирующих организаций.

8.1.4. Монтажные чертежи выполняются в объеме, позволяющем разработку деталировочных чертежей трубопроводов, необходимых для их индустриального изготовления и монтажа. В монтажных чертежах приводятся сведения о методах и параметрах испытаний трубопроводов, требования по обработке внутренней поверхности трубопроводов (промывке, продувке, обезжириванию) и др.

8.1.5. Техническая документация трубопроводов должна определять трассу прокладки трубопроводных линий с указанием мест креплений, отвечать требованиям безопасной эксплуатации трубопроводов, обеспечивать их надежность, экономичность, ремонтоспособность.

8.1.6. На монтажных и деталировочных чертежах трубопроводов элементы, арматуру, а также контрольно-измерительные приборы изображают условными обозначениями, приведенными в прил.5.

8.1.7. Условные обозначения, употребляемые при разработке монтажных и деталировочных чертежей, не нормируемые нормативными документами, приведены в прил.6.



8.2. Методы монтажа трубопроводов

8.2.1. Монтаж пластмассовых трубопроводов выполняют в соответствии с проектами трубопроводных линий, деталировочными чертежами, проектом производства работ (ППР), строительными нормами и правилами производства и приемки работ (СНиП), а также в соответствии с требованиями настоящих ОСН.

8.2.2. Монтаж трубопроводов, как правило, следует производить индустриальными методами, которые предусматривают заводское (централизованное) изготовление деталей и узлов трубопроводов по деталировочным чертежам и поставку их на объекты строительства в укрупненных блоках, узлах, элементах или секциях, укомплектованных арматурой, фланцами, метизами, а также опорами и подвесками. Это позволяет перенести до 75% всех трудозатрат и до 90% общего количества сварных стыков с монтажной площадки в заводские условия, а также значительно повысить уровень индустриализации, качество, сократить сроки изготовления и монтажа пластмассовых трубопроводов.

8.2.3. Наиболее эффективным является крупноблочный монтаж трубопроводов, при котором в трубозаготовительных цехах или на приобъектных площадках собирают обвязочные трубопроводы вместе с оборудованием в монтажные блоки, которые в укрупненном виде устанавливают в проектное положение. Этот метод отличается значительным повышением производительности труда и сокращением сроков строительства.

8.2.4. Монтажная организация в зависимости от условий производства работ определяет методы монтажа трубопроводов, несет ответственность за соблюдение требований и правил, предъявляемых к монтажу трубопроводов проектом и соответствующими ведомственными нормативными документами.

8.2.5. Для монтажа, изготовления сварных и формованных соединительных деталей при сооружении газопроводов должны применяться только трубы, предназначенные для этих целей.

8.2.6. Вопросы изменения проекта, которые возникают в процессе изготовления и монтажа трубопроводов, в том числе замены материалов и типоразмеров труб, арматуры, опор и подвесок, должны быть согласованы с заказчиком и с проектной организацией.

8.2.7. Выполнение монтажных соединений трубопроводов следует производить согласно разделам 4, 5 и 6 настоящих ОСН.

8.2.8. Тепловую изоляцию следует монтировать только после проведения испытаний трубопровода с выполнением мер, предотвращающих его повреждение (установка под бандажами и проволочными стяжками прокладок из брезента, асбестовой ткани или нескольких слоев стеклоткани).

8.2.9. Монтаж пластмассовых трубопроводов из полиэтилена ведут при температуре не ниже минус 20 °С, из полипропилена и поливинилхлорида - не ниже минус 10 °С.

Доставка пластмассовых труб с места хранения на монтаж в количестве, определяемом сменной выработкой, должна производиться непосредственно перед выполнением монтажных работ.

8.2.10. Для работ при монтаже трубопроводов обычно используют легкие самоходные стреловые краны, кранбалки, тельферы, тали, консольные поворотные краны, а также рычажные лебедки. Стропят узлы пластмассовых трубопроводов на ровных участках не менее чем в двух точках (во избежание резких перегибов трубы), запрещается стропить узлы за отбортовки или фланцы, за соединительные детали и ответвления в непосредственной близости от сварных швов. Стропы выбирают мягкие из текстоленты, пенькового каната и др.


8.3. Изготовление деталей, узлов и блоков трубопроводов

8.3.1. Индустриальные методы монтажа пластмассовых трубопроводов предусматривают изготовление поточным способом деталей и узлов трубопроводов в условиях трубозаготовительных цехов монтажно-заготовительных заводов или промбаз монтажных организаций. При этом применяется специальное оборудование, установленное в определенной технологической последовательности и связанное между собой транспортными или грузоподъемными средствами для передачи заготовок с одного рабочего места на другое. Технологический процесс изготовления узлов пластмассовых трубопроводов в трубозаготовительных цехах состоит из операций, приведенных на рис.8.1.


Рис.8.1. Схема технологического процесса изготовления деталей и узлов пластмассовых трубопроводов


Рис.8.1. Схема технологического процесса изготовления деталей и узлов пластмассовых трубопроводов

8.3.2. Изготовление узлов и блоков трубопроводов производится с учетом возможности и условий их транспортирования к месту монтажа и максимально возможного сокращения объемов работ на монтажной площадке, применения максимального количества однотипных по геометрической форме и размерам элементов, возможности сборки сложных пространственных заготовок.

8.3.3. Для изготовления узлов трубопроводов необходимо использовать трубы, соединительные детали и материалы, указанные в спецификациях проекта и удовлетворяющие требованиям соответствующих нормативных документов.

8.3.4. Трубозаготовительные работы, сварку и склеивание, выполнение разъемных соединений и контроль качества выполняемых операций при изготовлении узлов трубопроводов следует проводить в соответствии с указаниями разделов 4 и 5 настоящих ОСН.

8.3.5. Отклонение габаритных размеров узлов пластмассовых трубопроводов от проектных при габаритном размере деталей 3 м не должны превышать ±5 мм; на каждый последующий метр увеличения габаритного размера дополнительно ±2 мм. Общее отклонение при этом не должно превышать 15 мм.

Отклонение габаритных размеров узлов трубопроводов, связанных с изготовлением и монтажом опорных конструкций и технологического оборудования, компенсируется на монтаже за счет прямолинейных участков. Для компенсации отклонений свободные концы узлов трубопроводов изготавливаются большими по длине не менее чем на 20 мм.

Допустимые отклонения по прямолинейности осей в узле не должны превышать 10 мм на 1 м.

8.3.6. При строительстве объектов с объемом работ до 1 км трубопроводов или удаленных от основных баз на расстояние свыше 100 км целесообразно применять передвижные трубозаготовительные мастерские по изготовлению узлов пластмассовых трубопроводов непосредственно на монтажной площадке. Мастерские оснащаются необходимым оборудованием, устройствами и инструментом.

8.3.7. Испытание изготовленных узлов трубопроводов, как правило, следует производить на специальных стендах в трубозаготовительных мастерских. Допускается испытание узлов в составе смонтированного трубопровода.

8.3.8. Маркировку изготовленных узлов трубопроводов следует производить в соответствии с указаниями проектной документации.


8.4. Подготовительные работы перед монтажом трубопроводов

8.4.1. До начала монтажа пластмассовых трубопроводов монтажная организация должна выполнить следующие подготовительные работы:

комплектацию материалов и изделий по номенклатуре, указанной в проекте, и в соответствии с ППР. Все материалы и изделия должны иметь документы, удостоверяющие их качество;

подготовку крытых площадок для складирования и хранения труб, соединительных деталей, узлов трубопроводов и других материалов и изделий из расчета обеспечения не менее двухсменной потребности (условия складирования и хранения см. разд.3);

комплектацию сварочного и монтажного оборудования, устройств и инструментов и выполнение их наладки;

проверку знаний линейными ИТР и бригадирами (звеньевыми) ППР рабочей и нормативной документации;

подготовку рабочих к производству работ по монтажу пластмассовых трубопроводов с учетом их специфики, а также требований к надежности трубопроводных систем.

8.4.2. Поступающие на монтаж пластмассовые трубы, детали и арматура должны соответствовать требованиям п.3.3 настоящих ОСН.

Сварные и формованные соединительные детали должны изготавливаться только из отрезков труб, предназначенных для сооружения данного трубопровода.

8.4.3. До начала монтажа пластмассовых трубопроводов должны быть закончены все строительные (включая отделочные), электро-газосварочные и теплоизоляционные работы, монтаж технологического оборудования и трубопровод* (стальные, из чугуна, из цветных металлов и др.), а также выполнены траншеи под трубопроводы, сооружены эстакады, лотки, каналы и пр.
________________
* Текст соответствует оригиналу. - Примечание изготовителя базы данных. 

8.4.4. При приемке траншей должно быть проверено соответствие их размеров проектным, правильность устройства откосов, соблюдение уклонов, качество постелей и состояние креплений. Основания траншей в скальных грунтах должны быть подсыпаны слоем песка толщиной не менее 20 см. Песок не должен содержать масел и органических примесей.

8.4.5. В местах, указанных в проекте (в стенах зданий и каналов, перекрытиях, покрытиях и на колоннах), должны быть установлены закладные детали под опорные конструкции трубопроводов, а в местах проходов трубопроводов через фундаменты, стены, перегородки и перекрытия зданий - защитные гильзы (футляры).

8.4.6. Закладные детали и гильзы должны соответствовать рабочим чертежам проекта и устанавливаться в отверстие с плотным прилеганием опорных поверхностей к строительным конструкциям и с последующим замоноличиванием бетоном.

8.4.7. При отсутствии указаний в проекте допускается изготовление гильз из стальных, асбестоцементных и других труб, концы которых должны выступать на 20-50 мм из пересекаемой конструкции. Длину футляров допускается принимать равной толщине стены, перегородки или перекрытия. Внутренний диаметр футляра должен быть на 10-20 мм больше диаметра трубы, а зазор между трубой и футляром после монтажа трубопровода тщательно уплотнен асбестом или другим негорючим мягким материалом.

8.4.8. Отклонения отметок закладных деталей для установки опор и подвесок не должны превышать от проектного положения: по осям в плане ±10 мм, по высотным отметкам - 10 мм, по уклону +0,001 (только в сторону увеличения - 1 мм на 1 м длины трубопровода).

8.4.9. Проходы и подъезды до начала монтажа трубопроводов должны быть освобождены от строительного мусора и посторонних предметов, чтобы обеспечить свободный доступ к рабочим местам.

8.4.10. На приемку строительных конструкций под монтаж трубопроводов составляется акт.

8.4.11. Технологическое оборудование до начала монтажа пластмассовых трубопроводов должно быть установлено в проектное положение (за исключением случаев, когда оборудование монтируют в комплекте с обвязочными трубопроводами агрегатированными блоками). Поэтому перед монтажом проверяют соответствие чертежам, расположение штуцеров технологического оборудования, к которым присоединяются трубопроводы, а также точность установки оборудования по осям и отметкам. При отступлениях от проекта корректируются чертежи узлов и места расположения замыкающих (монтажных) стыков между узлами трубопроводов.

8.4.12. Для выполнения монтажных работ на высоте должны быть сооружены согласно проекту производства работ инвентарные сборно-разборные леса или подмости (самоходные или перемещающиеся). Применение самодельных неинвентарных лесов или подмостей допускается только с письменного разрешения руководства монтажной организации. При работе на высоте более 4 м неинвентарные леса и подмости выполняют по проекту, утвержденному главным инженером монтажной организации.

8.4.13. Непосредственно перед монтажом трубопроводов производится ознакомление с местом прокладки трубопровода, при этом выясняют, возможно ли проложить трубопровод в соответствии с монтажными чертежами (на принятом расстоянии от стен и колонн здания или сооружения, на заданной высоте) и не мешают ли прокладке трубопровода какие-либо препятствия (ранее смонтированные конструкции систем вентиляции, линии электропроводов и др.), возможно ли установить в местах, указанных на чертежах, опорные конструкции, компенсаторы, арматуру и т.д.



8.5. Монтаж трубопроводов в зданиях

8.5.1. При сооружении пластмассовых трубопроводов в зданиях непосредственно на месте монтажа выполняются следующие работы: монтаж опор и подвесок; укрупнительная сборка в блоки плоских и пространственных узлов трубопроводов, полученных с трубозаготовительных предприятий; комплектация и подготовка собранных блоков и узлов к монтажу; установка в проектное положение блоков и отдельных узлов; установка арматуры и компенсаторов, не вошедших в состав узлов и блоков; выполнение монтажных соединений, замыкающих стыков между отдельными узлами и блоками; испытание линии трубопроводов и сдача их в эксплуатацию; разборка лесов и подмостей.

8.5.2. Прокладывать трубопроводы следует в соответствии с проектом на отдельных опорах, подвесках или на сплошном основании. Опорные конструкции должны быть также установлены для арматуры и компенсаторов. В качестве отдельных опор и подвесок допускается по согласованию с проектной организацией применять крепления, используемые для металлических трубопроводов. При этом применяемые крепления в местах соприкосновения с пластмассовой трубой не должны иметь острых кромок и заусенцев, а между трубой и прилегаемой к ней деталью крепления должна быть уложена прокладка из эластичного материала (резины, войлока, пластмассы и т.д.), обычно приклеиваемая к детали клеем 88Н. Ширина прокладки должна на 10 мм превышать ширину детали (хомута, скобы), либо деталь должна иметь отбортовки, фаски, скругленные края, исключающие повреждение труб при температурных удлинениях трубопровода. Хомуты опор и подвесок не должны препятствовать осевым перемещениям трубопровода при температурных удлинениях.

8.5.3. Устанавливаемые опорные конструкции, сплошные основания, опоры и подвески, изготовленные из металла, должны иметь антикоррозионное покрытие, предусмотренное проектом в зависимости от условий эксплуатации.

8.5.4. Опоры и подвески, опорные конструкции устанавливают на предварительно размеченные места, при этом их положение должно обеспечивать заданные проектом трассировку и уклон трубопровода. Отклонение положения опор и опорных конструкций от проектного положения не должно превышать в плане ±5 мм для трубопроводов, прокладываемых внутри помещения.

При необходимости регулирования положения трубопровода в вертикальной плоскости и для обеспечения проектного уклона допускается установка под подошвы опор металлических прокладок соответствующей толщины, привариваемых к опорным конструкциям. Регулировка положения трубопровода с помощью прокладок между трубопроводами и опорами не допускается. Регулировка длины тяг подвесок производится только за счет резьбового регулировочного узла на них. Тяги подвесок трубопроводов, имеющих температурные удлинения, должны быть установлены с наклоном в сторону, обратную удлинению трубопровода.

8.5.5. Опоры, подвески, опорные конструкции должны плотно прилегать к строительным конструкциям (колоннам, ригелям, панелям, перекрытиям, стенам и т.д.), технологическим металлоконструкциям и оборудованию, к которым они крепятся. Крепление осуществляется различными способами: к железобетонным колоннам - стяжными болтами, углубленными в специально вырубленные канавки; к металлоконструкциям - на сварке. Если трубопроводы размещают в бороздах или шахтах, необходимо, чтобы внутренние поверхности люков и щитов, закрывающих борозды или шахты, не имели острых выступов (болтов, гвоздей и др.).

8.5.6. Поступающие на монтаж трубы, детали и узлы трубопроводов до их установки в проектное положение должны проходить укрупнительную сборку на специальных участках, размещаемых в закрытых помещениях непосредственно возле строящегося объекта и рядом с подъездными дорогами. Укрупнительную сборку производят на выверочных стеллажах или столах, оснащенных тисками, центраторами и упорами, обеспечивающими правильное положение труб, деталей, узлов и арматуры при выполнении неразъемных и разъемных соединений. Размеры и масса укрупненных узлов трубопроводов должны обеспечивать удобство их транспортировки к месту установки в проектное положение, возможность прохода через строительные проемы, между смонтированными металлоконструкциями, оборудованием, линиями других строящихся трубопроводов. Поскольку поступающий на монтаж узел не должен требовать каких-либо подгоночных работ на месте установки, то рекомендуется производить предварительно контрольную сборку сопрягаемых между собой укрупненных узлов. При укрупненной сборке деталей, арматуры и узлов трубопроводов с них снимают временные заводские заглушки и пробки, предохраняющие их концы от загрязнения в период транспортировки и хранения, производят контрольные замеры узлов, проверяют расположение присоединительных штуцеров у оборудования в местах установки блоков, при необходимости на узлах и элементах отрезают припуски или, наоборот, приваривают патрубки нужной длины. Перед установкой арматуры в укрупненный узел нужно убедиться в том, что запорный орган легко открывается и закрывается, а при установке проверить правильность подбора фланцев, крепежа, прокладочных материалов и следить за тем, чтобы не было перекоса при сборке фланцевых соединений арматуры.

8.5.7. Монтаж готовых блоков и узлов трубопроводов начинают от аппаратов и технологического оборудования, оставляя свободные концы труб для присоединения к ним прямых участков. Укрупненные блоки и отдельные узлы вначале временно закрепляют на подвесках или опорах, затем присоединяют к аппаратам (оборудованию). Прямые участки укладывают не менее чем на две опоры, а пространственные крепят так, чтобы они не могли сместиться под влиянием собственной массы (перед установкой узлов и прямых участков труб необходимо убедиться, что в трубах нет посторонних предметов и грязи). Если аппарат (оборудование) нужно установить в труднодоступном месте или на высоте, то целесообразно максимальное количество узлов смонтировать до подъема аппарата (оборудования) в проектное положение. После выполнения монтажных соединений отдельных блоков трубопроводов собранный участок окончательно закрепляют на опорах и подвесках, выверяют и регулируют в соответствии с монтажной документацией. Защитные кожухи, предусмотренные проектом на разъемных фланцевых соединениях трубопроводов, необходимо устанавливать только после проведения испытания трубопровода.

8.5.8. Арматура и компенсаторы пластмассовых трубопроводов, как правило, устанавливаются на отдельных опорах или подвесках, чтобы не создавать дополнительной нагрузки на трубопровод и его соединения. Арматуру на горизонтальных трубопроводах устанавливают шпинделями вертикально вверх или наклонно, в пределах верхней полуокружности. При монтаже арматуру стропят только за корпус. Монтировать компенсаторы необходимо согласно указаниям, приведенным в проекте. П-образные и лирообразные компенсаторы присоединяют к трубопроводам сваркой или на разъемных фланцевых соединениях в зависимости от типа соединений, принятого проектом для данного трубопровода. Крепление арматуры и компенсаторов к опорным конструкциям производится хомутами или скобами.

8.5.9. Если пластмассовые трубы применяются для защиты электропроводок, то их ввод в аппараты и коробки осуществляют в соответствии с рис.8.2 (для уплотненных вводов) или рис.8.3 (если вводы уплотнять не требуется). При изменениях длины трубопровода в процессе эксплуатации необходимо предусматривать место для перемещения конца трубы на вводе.


Рис.8.2. Способы уплотнения вводов пластмассовых труб в аппараты и протяжные коробки


Рис.8.2. Способы уплотнения вводов пластмассовых труб в аппараты и протяжные коробки:

а - через сальник с резиновым уплотнением; б - через запрессованный патрубок с клеевым соединением; в, г - через эластичную втулку (в - до ввода трубы; г - после ввода трубы); 1 - резиновое уплотнение; 2 - корпус сальника; 3 - пластмассовая труба; 4 - патрубок из ПВХ; 5 - клеевое соединение; 6 - эластичная втулка

Рис.8.3. Схемы неуплотненных вводов пластмассовых труб в протяжных коробках


Рис.8.3. Схемы неуплотненных вводов пластмассовых труб в протяжных коробках:

а - через запрессованный патрубок; б - через патрубок, установленный с помощью крепежных деталей; в - непосредственно в отверстие коробки; 1 - патрубок из ПВХ; 2 - пластмассовая труба; 3 - гайки; 4 - металлический патрубок с резьбой; 5 - крепежная скоба



8.5.10. При монтаже трубопроводов должны быть выдержаны предусмотренные проектом уклоны. При отсутствии таких указаний трубопроводы следует прокладывать с уклоном 0,002-0,005 в сторону аппарата или дренажных устройств.

8.5.11. При установке на пластмассовых трубах устройств для продувки и дренажа необходимо, чтобы способ присоединения к трубам пластмассовых штуцеров был равнопрочен применяемым в трубопроводе соединениям.

8.5.12. Арматура пластмассовых трубопроводов соединяется с трубопроводами только на разъемных фланцевых соединениях. При установке арматуры проверяют правильность подбора фланцев, крепежа, прокладочных материалов и следят за тем, чтобы не было перекоса при сборке фланцевых соединений арматуры.

8.5.13. При сооружении внутрицеховых пластмассовых трубопроводов в большинстве случаев используется самокомпенсация трубопроводов. Это достигается выбором рациональной схемы прокладки, правильным размещением так называемых "мертвых" точек, делящих трубопровод на такие участки, температурная деформация которых происходит независимо друг от друга и самокомпенсируется. При сооружении межцеховых трубопроводов компенсацию осуществляют только с помощью П-образных и лирообразных компенсаторов. Для полиолефиновых труб наружным диаметром до 50 мм допускается применять компенсационные петли, которые должны располагаться в вертикальной плоскости выпуклостью вниз.

8.5.14. При выборе расположения соединений принимают меры по их возможной разгрузке и повышению надежности трубопровода в целом, а также созданию условий эффективного монтажа и эксплуатации. К числу таких мер относятся следующие.

Соединения, выполняемые на горизонтальных участках надземных трубопроводов, целесообразно размещать на расстоянии от отдельных опор и подвесок, равном 1/5-1/4 длины пролета. В этой зоне минимальны изгибающие напряжения, возникающие от массы транспортируемого вещества и самого трубопровода. Не допускается расположение сварных соединений от опор и подвесок на расстоянии менее 50 мм. В местах расположения разъемных соединений (например, на свободных фланцах) в сплошном основании должны быть предусмотрены разрывы. Величина разрывов выбирается из условия обеспечения свободных перемещений фланцев, движущихся совместно с трубопроводом в процессе компенсации температурных деформаций. На прямых вертикальных участках соединения располагают ближе к опорам. Такое расположение позволяет разгрузить узлы соединений от изгибающих усилий, возникающих в случае потери трубопроводом устойчивости при изменении температуры.

В надземных прокладках узлы соединений, выполненных с помощью металлических соединительных деталей, должны иметь опоры, исключающие передачу нагрузки от их массы на пластмассовый трубопровод. Соединения должны располагаться в местах, где может быть обеспечено безопасное и производительное выполнение сварочных работ. По возможности соединения целесообразно размещать в местах, легко доступных для осмотра и ремонта при эксплуатации. Расположение соединений в футлярах (при пересечении строительных конструкций) не допускается.


8.6. Ремонт трубопроводов в процессе монтажных работ

8.6.1. Выявленные в процессе испытания смонтированного трубопровода дефекты требуют проведения соответствующих ремонтных работ - устранения течи в разъемных соединениях, замены неразъемных соединений, отдельных труб или участков трубопровода и др.

Контакты

Наши телефоны:

8 (495) 644-5-333;

8 (968) 019-9-019.

Эл. почта: 

kascad-str@yandex.ru

Наш адрес:

Московская область г. Сергиев-Посад, ул Пограничная д.5